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ABSTRACT

In multiple linear regression analysis, multicollinearity and outliers
are two main problems. When multicollinearity exists, biased
estimation techniques such as Ridge and Liu Estimators are
preferable to Ordinary Least Square. On the other hand, when
outliers exist in the data, robust estimators like M, MM, LTS and S
Estimators, are preferred. To handle these two problems jointly,
the study combines the Ridge and Liu Estimators with Robust
Estimators to provide Robust Ridge and Robust Liu estimators
respectively. The Mean Square Error (MSE) criterion was used to
compare the performance of the estimators. Application to the
proposed estimators to three (3) real life data set with
multicollinearity and outliers problems reveals that the M-Liu and
LTS-Liu Estimator are generally most efficient..

Keywords: Ordinary Least Squares, Ridge Regression Estimator,
Liu Estimator, Robust Estimator, Robust Ridge Regression
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1.0. INTRODUCTION
Regression analysis is used to study the relationship between a
single variable Y, called the response variable, and one or more

explanatory variable(s), X,,..., Xpby a linear model. The

method of Ordinary Least Squares (OLS) estimator of model
parameters is best linear unbiased estimator (BLUE) and most
efficient under certain assumptions (Gujarati, 2003).

One of the assumptions of Linear Regression model is that of
independence between the explanatory variables (i.e. no
multicollinearity). Violation of this assumption arises most often in
regression analysis. Among methods used in detecting the
presence of Multicollinearity is variance inflation factor (VIF). The
performance of OLS estimator is inefficient if this assumption is
not valid and the regression coefficients have large standard
errors and sometimes have wrong sign (Gujarati, 2003). In this

problem of outlier. Examples of these estimators are M-estimator
proposed by Huber (1964), Least Trimmed Mean (LTS) by
Rousseeuw and Van Driessen (1998), S estimator proposed by
Rousseeuw and Yohai (1984) and MM estimator by Yohai (1987)
among others.

These two problems may jointly exist in regression analysis. This
has attracted the attention of some researchers. Holland (1973)
proposed robust M-estimator for ridge regression to handle the
problem of multicollinearity and outliers. Askin and Montgomery
(1980) proposed ridge regression based on the M-estimator.
Walker (1984) modified Askin and Montgomery's approach to
allow the use of Generalized M estimators instead of M
estimators. Simpson and Montgomery (1996) proposed a biased-
robust estimator that uses a multistage Generalized M estimator
with fully iterated ridge regression. Lukman et al. (2014) proposed
and applied some Robust Ridge Regression Estimators to the
Hussein and Abdalla (2012) data. Alpu and Samkar (2010)
applied Liu estimator based on M estimator to a VO2 data.

The aim of this study is to combine Ridge and Liu estimators with
some robust estimators to jointly handle the problem of
Multicollinearity and outliers. Also, to compare the performances
of these combined estimators with their individual counterparts

2.0. MATERIALS AND METHOD

2.1. Ordinary Least Square Estimator
Consider the standard regression model:

Y=XpB+e "

where X is an Nx P matrix with full rank, Y is a Nx1
vector of dependent variable, B isa P x 1 vector of unknown

parameters, and & is the error term such that E (&) =0 and

situation, many estimators have been proposed to combat this E(&S‘ ') =c’l.

problem among which are: Stein Estimator by Stein (1956), Liu . VA . . o
Estimator by Liu (1993) and Ridge Estimator proposed by Hoerl Provided X "X is invertible, the OLS estimator is given by
and Kennard (1970). n

Other problems in regression analysis include the problem of L=(X 'X)71X 'y )

outlier and leverage points. An outlier is an observation that is
distant from other observations. Leverage points are points that
appear to be outlying in the regressors. Methods such as
studentized deleted residual and Mahalanobis distance are used
to detect the presence of outliers and leverage point respectively.
Cooks D and DFFITS are often used to determine if either the
outliers or leverage points influences the regression coefficients.
Robust regression estimator is commonly used to circumvent the

The regression model in equation (1) can be written in canonical
form

y=Za+¢ 3)
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where Z = XQ, ¢ = Q" £ and Qs the orthogonal matrix
with columns that constitute the eigenvectors of X ' X . Then
Z2'Z=Q'X'XQ=A= dlag(/?l,ﬂz,...,ﬂp) ,
where 4, < A4, <
Thus, the Ordinary Least Square Estimator of a is

Ao = A'Z'y “)

W< /1p are ordered eigenvalues of X'X.

2.2. Ridge Regression Estimator

If Z'Z matrix is ill-conditioned, (especially when there is a near-
linear dependency among the explanatory variables), the OLS
estimator of o tends to have
a large variance. Ridge parameter is added to the Z'Z matrix to
reduce the collinearity effect. Hoerl and Kennard (1970) defined
the ridge regression estimator of ¢ as:

alk) =(Z'z +

kD)™'Z'y (5)
where k is the ridge parameter. The value of k used in this study
is the one proposed by Lukman (2015).

(6)

and

n 2
where 672 is the estimated MSE calculated as 62 = %

@ is the estimated regression coefficient.

2.3. Liu Estimator

To overcome multicollinearity, Liu (1993) proposed the Liu
Estimator by combining the Stein estimator with Ridge estimator
to form

= (X' X+ D)X X +dD) By -

where d is the Biasing parameter and can be computed according

to Liu by
Z": 1
2| T AW
d, =1-6%| 12 (AZ
CX

+

i=1

®)
where & = Q',BOLS and G are Ordinary Least Square

estimators of a and 0'2 respectively, and Q is the matrix of
eigenvectors corresponding to the eigenvalues o the matrix X'X.
Now equation (7) can be written in canonical form:

G =(A+1,)(A+d1)dg ©)

where Ip is the p-identity matrix
2.4. Robust Regression

24.1. M-Estimator
The most common method of robust regression is M-estimation,
introduced by Huber (1964). It is nearly as efficient as OLS.
Rather than minimizing the sum of squared errors, M-estimate
chooses S to minimize

kan (451
(10)

Possible choices of p are:

p(x) = x? is just least squares and p(x) = |x| is called the
least absolute deviations regression (LAD).

p(x) =

2
x
/2, if lx] <c

CZ
c|x|—7, otherwise
(1)
Differentiating the M-estimate criterion with respect to S;and
setting to zero, we get;

Vi—Xioq XijB .
?:1!7(—] — ]) xj;=0,j=

a

1,..,p (12)
Now let u; = y; — X7_, x;;B; to get
"(uy)
o pul;' l](yl._ j= 1xuﬂ1)
0 (13)

making the identification of
w(w) = 2% and find w (w) for choices of p above:

1. LS w(u)is constant.

2. LAD:w(w) = 1/|ul
1, if lul<c

3. Huber:w(u) = {L

[ul’

othrwise

24.2. MM-Estimator

It was first introduced by Yohai (1987). It has become increasingly
popular and perhaps one of the most commonly employed robust
regression technique. The “MM” in the name refers to the fact
that more than one M-estimation procedure is used to calculate
the final estimates. Following from the M-estimation case,
iteratively reweighted least squares (IRLS) is employed to find
estimates. The procedure is as follows:

1, Initial estimates of the coefficients £ and

corresponding residuals ei(l) are taken from a highly resistant
regression (i.e., a regression with a breakdown point of 50%).
Although the estimator must be consistent, it is not necessary that
it be efficient. As a result, S-estimation with Huber or bisquare
weights (which can be seen as a form of M-estimation) is typically
employed at this stage.

2. The residuals ei(l)from the initial estimation at Stage 1
are used to compute an M-estimation of the scale of the residuals,
Oc.

3. The initial estimates of the residuals from Stage 1 and
of the residual scale &, from Stage 2 are used in the first iteration
of weighted least squares to determine the M-estimates of the
regression coefficients

tawi (efV/6,)xi =
0
(14)
where the w; are typically Huber or bisquare weights.
4. New weights are calculated, w( ) , using the residuals
from the initial WLS (Step 3).
5. Keeping constant the measure of the scale of the

residuals from Step 2, Steps 3 and 4 are continually reiterated
until convergence.
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24.3. S-Estimator

In response to the low breakdown point of M-estimators.
Rousseeuw and Yohai (1984) proposed S-estimates by
considering the scale of the residuals. S-estimates are the
solution that finds the smallest possible dispersion of the residuals

miné (ei(/?), en(/?)) Rather than minimizing the variance
of the residuals, robust S-estimation minimizes a robust M-
estimate of the residual scale

1 i

1yr.p (L) =0, (15)
where b is a constant defined as b = E4[p(e)land ¢

represents the standard normal distribution. Differentiating
Equation 18 and solving results in

(S, (16)

where 1 is replaced with an appropriate weight function. As with
most M-estimation procedures, either the Huber weight function
or the biweight function is usually employed.

244. Least Trimmed Squares (LTS) Estimator
Another method developed by Rousseeuw (1998) is least
trimmed squares (LTS) regression. Extending from the trimmed
mean, LTS regression minimizes the sum of the trimmed squared
residuals. The LTS estimator is found by;

q

. 2
min Z e(i),

i=1
where g = [n(1 —a) + 1] is the number of observations
included in the calculation of the estimator, and a is the proportion

of trimming that is performed. Using q = (%) + 1 ensures that
the estimator has a breakdownpoint of 50%.

2.5. Robust Ridge Regression (RRR)

To solve the problems of multicollinearity and outlier
simultaneously, the ridge estimator was combined with some
robust estimators (M, MM, LTS and S estimators) to form robust
ridge estimator (RRE) which are M-Ridge, MM-Ridge, LTS-Ridge
and S-Ridge estimators (Lukman et al., 2014). These Robust
ridge estimators can be computed as:

~ ! -1,
dRpr = (ZZ + kALrobustIp) z'Y (17)

where ka;.opust 1S the robust ridge parameter. It is obtained from
the robust regression methods instead of the OLS estimation, and
can be computed as given below;

k

ALrobust —

2.6. Robust Liu Estimator (Proposed)

To solve the problems of multicollinearity and outlier
simultaneously, Liu estimator combined with some robust
estimators (M, MM, LTS and S estimators) to provide robust Liu

estimator (RLE) which are M-Liu, MM-Liu, LTS-Liu and S-Liu
estimators. These Robust Liu estimators can be computed as:

e = (A+1) 7 (A+dgl )y (19)

where O is the biasing parameter obtained from robust
estimators, computed as:

=LA (20)

2.7. Data Description

Three datasets are used in this study to examine the performance
of the estimators. The datasets are given in details below.

2.71. Longley Data

Longley Data is a macroeconomic dataset which provides a well-
known example for a highly collinear regression. A data frame
with seven economic variables observed yearly from 1947 to
1962. The variables are: Employment, Prices, Unemployed,
Military, GNP, Population Size, Year. GNP is the Gross National
Product, Employment is the number of people employed,
Unemployed is the number of unemployed, Military is the number
of people in the armed forces, Population size is the non-
institutionalized population of persons at age =14 years, Price is
the GNP implicit price deflator and year is the time.

Longley data have been diagnosed to suffer both problems of
multicollinearity and outlier (Cook, 1977; Besley et al., 1980; and
Jahufer, 2013).

2.7.2. Portland cement data

Portland dataset traceable to Woods et al. (1932) has been widely
analysed by Kaciranlar ef al. (1999). The dataset contains four
explanatory varaiables which are tricalcium aluminate (X1),
tricalcium silicate (X2), tetracalcium aluminoferrite (Xs) and -
dicalcium silicate (X4). The heat evolved after 180 days of curing
is the dependent variable (Y). The dataset suffers multicollinearity
since variance inflation factors are greater than 10. Mahalanobis
distances of observations 3 and 10 revealed that the observations
are leverage. With this it is obvious that there is outlier in the x-
direction and no outlier in the y-direction. As a result, it is
observed that multicollinearity and leverage point exists jointly in
the dataset.

2.7.3. Hussein and Abdalla data

This dataset was used by Hussein and Abdalla (2012) and it
covered the products in the manufacturing sector of Iraq in the
period of 1960 to 1990. The variables used are the product value
in the manufacturing sector(Y), value of imported intermediate
(X1), imported capital commodities (X2) and value of imported raw
materials (Xs). Hussein and Abdalla (2012) showed that the
dataset suffers the problem of multicollinearity since VIF > 10.
Lukman et al. (2014) identified case number: 12, 14, 15, 16, 17,
18, 19, 20 and 21 as outliers in the y-direction and also identified
case number 12, 14 and 15 as leverages. Therefore, outliers exist
in the y and x direction.
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2.8. Criterion for investigation

To investigate whether the robust ridge estimator is better than
the OLS estimator, the MSE was calculated as follows:

A _ a2 p
MSE(“ Ridge) =0gLs Zi=1 Gutkors)?

2
a;
k p i,0LS
oLS Zl=1 irkors)?

A _ a2 p
MSE(aRobust Ridge) = Orobust Zi=1 e +

2
k2 yP  Girobust
R &i=1 (3+kp)?

MSE(&,) = 6230
1)2 P ﬁf

=1 (,41)2
MSE(a Robust Liu) =

=2
1)2 P i robust
=1 (5 +1)2
MSE(@oLs) =
~2yvp 1
o i=1 A

(24)

(ni+d)?
(=1 (5;+1)2

62

robust

Ai

P

+(d -

Ai
+kr

(20)

)2

(21

Oitdg)®

i=1 (nj+1)2

(23)

(22)
+ (dg —

Table 3: Estimates of Ridge, Liu, Robust Ridge and Robust Liu

Estimators
COEFFICIENTS
Estimators. d,‘ C}l d,: d,‘ a, C}é .
MSE( & )

ORR 015354 -0.5450 0.83879 1.0057 422712 -57.293 1707469
Liu 0.1548 -0.5494 0.8455 1.0138 42,587 -53.71192 14818.97
M-Ridge 01526 -0.54164 0.83361 0.9995 42011 -56.939 7382117
M-Liu 0.1547 -0.5496 0.8156 0.9347 37.3557 -23.267 6412.16
MM-Ridge 0.1535 -0.5449 0.8386 1.0055 42.264 -57.282 15042.48
MM-Liu 0.1547 -0.5496 0.8225 0.9481 38.3467 -28.151 1305471
LTS-Ridge 015421 -0.54737 084243 1.0101 42.455 -57.542 7557 889
LTS-Liu 0.1547 -0.5458 0.752 0.9897 19.1647 -76.2155 6582.04
S-Ridge 0.15391 -0.54632 0.84081 1.0081 42374 -57.431 15045.45
S-Liu 0.1547 -0.549% 0.8157 0.9348 37.3608 -23.3325 13058.909

From Table 1, it is obvious that the data suffers a severe problem
of multicollinearity since the Variance Inflation Factors (VIF) are
greater than 10 except for Xs. Also from Table 2, the data has
outliers in the y-direction, hence the data suffers both problem of
multicollinearity and outliers. It follows from Table 3 that the two
problems have been circumvented with the use of Robust Liu and
Robust Ridge Regression Estimators and it is found that the

where A;, (i = 1,2, ..., p) are the eigenvalues of X'X, kis the
ridge parameter obtained from OLS and Robust estimates,
a; (i =1,2,...,p) is the ith element of the vector & = Q'p.

Robust Liu is the most efficient in term of MSE.

3.2. Results for Portland Cement Data

3.0. RESULTS AND DISCUSSION

3.1. Result for Longley Data

Table 1: Summary of OLS and Robust Estimates

COEFFICIENT OLS [ MM LTS $ V¥
d1 0.1548 01547 01347 0.1547 0.1349 1355358
df: 0.5404 05408 05405 £.5438 05448 1788.498
ds 06455 081% 0.8351 0.7562 0.7062 300.1466
dg 10138 09347 08764 0.9887 10413 336188
O:f:. 426115 nam 404466 19.1757 13.2611 35880
O:fs 577536 25012 4271 819413 T23343 7369658
ky 0008042 0.0142985 0.008224 0.0036817 0.000885
d 00004387 0.0001718 0000589 0.0001601 0001708
MSE(@) 17095.175 73978642 15060.94 73620395 1504743
Table 2: Summary of the Influential and Leverage Points
. . Studentized
Observation Residual Leverage Deleted Residuals Dffi
1 267.34 0.36204 118111 1.014*
2 -94.014 0.50248 -0.4463 -0.509
3 46.2872 0.29957 0.17959 0.135
4 -410.11 0.30973 -1.9417 -1.495*
5 309.715 0.55301 1.84403 2333
6 -249.31 0.30707 -1.0339 -0.792
7 -164.05 0.42903 -0.7351 0723
8 -13.18 044216 0.0579 -0.058
9 14.3048 0.39462 0.06006 0.055
10 455.394 0.26812 2.16945 1.525*
" -17.269 0.29738 -0.0668 -0.05
12 -39.055 0.42062 -0.1683 -0.163
13 -155.55 0.31181 -0.6227 -0.482
14 85671 0.16588 -0.3034 -0.165
15 341932 0.31037 1.51479 1.168*
16 -206.76 0.62611 -1.2534 -1.864*

A Comparative
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Table 4: Estimates of OLS and Robust estimators

Coefficient oLS M MM LTS S VIF
@y 16373 16371 16371 16377 16388 38496
@ -0.2097 -0.2032 02027 -0.1806 01831 264.423
as 0.9160 0.8905 0.8889 0.8205 08255 46.868
ay -1.8405 -1.8672 -1.8683 -1.9687 -19623 282613
Kar 0.0104 0.1124 0.7739 0.3407 08144
D 4.1604 0.2934 0.2928 0.2639 0.2659
a? 58454 3.26T 58342 1.5561 5.8057

MSE(a@) 0.0638 0.0356 0.0837 00170 00633

Table 5: Estimates of Ridge, Liu, Robust Ridge and Robust Liu

estimators
Coefficients
Estimators a [723 @3 @y MSE(@)
ORR 0.929%6 0.1191 0.5201 -0.0540 0.0691
Liu 16374 0.2099 0.9196 -1.8952 0.0674
M-Ridge 14190 0.1886 08235 -16545 0.0359
M-Liu 1.6367 0.2032 0.8897 -1.8548 0.0354
MMridge 0.9230 0.1182 0.5164 -1.0396 0.0691
MM-Liu 16371 02027 0.8881 -1.8569 0.0631
LTS-ridge 14302 0.1832 0.8002 -16077 0.0174
LTS-Liu 16377 -0.1806 0.8198 -1.9561 0.0170
S-Ridge 0.9024 0.1156 0.5049 -1.0144 0.0691
S-Liu 16388 01831 0.8247 -19488 0.0628

From Table 4 and 5, it can be seen that in terms of MSE criterion
of the estimators, the LTS-Liu, LTS-Ridge in this order, are more
efficient than the OLS. Thus, LTS-Liu is most efficient.

3.3. Result for Hussein and Abdalla Data

Table 6: Estimates of OLS and Robust estimator

Coefficient oLS M MM LTS S
@ 1.3143 1.3048 1.3821 1.3803 1.3807
a; -1.5151 -1.8513 -4.9978 57278 -5.8198
ay 20164 1.7145 -3.6142 -4.9724 -5.2153
kay 0.0104 0.0209 0.0685 0.0918 0.0800
D 0.4385 0.3396 0.0758 0.0403 0.0367
a? 37736 7851.32 5316.35 401717 5207.70
MSE(&) 47230 0.9827 0.6654 0.5028 0.6631
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Table 7: Estimates of Ridge, Liu, Robust Ridge and Robust Liu
estimators

COEFFICIENTS
Estimators a, @y as MSE(&;)
ORR 1.3007 14996 1.9956 4723
L 1.3143 15151 2.0162 47225
M-Ridge 1.2874 -1.4841 1.9751 0.9826
M-Liu 1.3048 18513 17144 0.9825
MM-ridge 123 1418 1.8871 0.6653
MM-Liu 1.3821 49977 -36138 0.6653
LTS-ridge 1.2038 -1.3895 1.8464 0.5028
LTS-Liu 1.3803 57277 49719 0.5027
S-Ridge 1.2169 -1.4029 1.867 0.6630
S-Liu 1.3807 58197 52147 0.6629

The result in Table 7 shows that robust Liu (LTS-Liu) and robust
Ridge (LTS-Ridge) regression estimators have least mean square
error.

4.0. Conclusion

Ordinary Least Square (OLS), Liu Regression and Ordinary Ridge
Regression (ORR) estimators could not perform well in term of
their Mean Squared Error (MSE) in the presence of
multicollinearity and outlier but ORR and Liu estimator performs
better than that of Ordinary Least Square (OLS) Estimator. It is
observed that Robust Ridge Estimators (RRE) and Robust Liu
estimators perform better than the ORR, LRE and OLS estimators
when both problems exist. Finally, M-Liu and M-Ridge perform
most in this order when the outliers are in y-direction, while LTS-
Ridge and LTS-Liu perform better when the outliers are in x-
direction (Leverage).
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