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ABSTRACT  
There are different methods for estimating the between-study 

variance, 𝜏2 in meta-analysis, however each of the methods 

differs in terms of precision and bias in estimation. Consequently, 
each of the estimators have a different effect on the estimate of 
the population treatment effect parameter 𝜃. This paper 

compares the effect of four estimators by DerSimonian and Laird 
(1986), Paule and Mandel (1982), Sidik and Jonkman (2005) and 
the restricted maximum likelihood method (REML). Simulations 
show that of all estimators, random-effects meta-analysis based 
on REML yielded the most accurate coverage probability for 
treatment effect when treatment effects are highly heterogeneous. 
 
Keywords: Meta-analysis; random-effects model; between-study 
variance; and coverage probability.   
 
INTRODUCTION 
Since the middle of 20th century, there has been considerable 
increase in the volume of scientific research in nearly every field 
with new findings daily challenging the existing evidence. There is 
a need to carefully summarize the available literature and perform 
a review of the data. Traditional method of assimilating 
accumulating information based on discursive reviews cannot 
adequately provide accurate, reliable and valid summaries of 
research (Glass et al., 1984), and thus more objective methods 
are required. Meta-analysis is a statistical method that provides 
the first step to such objectivity (Schmidt, 1992), allows to 
combine results from many studies and accurately estimate the 
effect of interest (Hedges, 1978, Rosenthal, 1987). Such analyses 
have become a very commonly used methodology for quantitative 
review and for summarizing evidence from independent studies in 
social and medical sciences. 
 
In wanting to summarize evidence, outcomes of different 
independent studies are first converted into same metric called 
effect size (e.g. mean difference, relative risks, risk difference and 
odd ratio) and then combine results using fixed-effect and 
random-effects models (Hedges and Vevea, 1998, Hunter and 
Schmidt, 2000, Sutton et al., 2000). Of these methods the so 
called random-effects model is the most preferred (Hunter and 
Schmidt, 2000) due to its ability to account for variation in effects 
across the studies. Random-effects model allows more 
generalisation of inference to the entire population compared to 
the fixed-effect model (Biggerstaff and Tweedie, 1997). It allows 
different mean effects across the studies and assumes that they 
are sampled from a population of parameters having a single 
overall mean treatment effect. Random-effects model account for 
studies characteristics such as study design, different treatment 
protocols, gender and cultural difference between study 

participants by incorporating an additional source of variability 

called between-study variance 𝜏2 to variability due to sampling 

error (within-study variance). The between-study variance 𝜏2 
describes the degree of inconsistency among the different effect 
estimates (Viechtbauer, 2007). 
 
The objective of meta-analysis is to combine results from different 
independent studies in order to estimate the treatment effect 
parameter, 𝜃 on which decision making is based. However, there 

are different methods for estimating  𝜏2, see Veroniki et al. 

(2015), and each of the estimators differs in terms of their bias 
and precision in estimation. By definition, the estimate of 𝜃 is a 

function of 𝜏2, see Section 2. And since each of the estimators of 

𝜏2 have a different bias, this as well can affect the accuracy and 
precision with which 𝜃 is estimated. In this paper, we considers 

the commonly use estimators of 𝜏2 and make a comparison 

analysis with the purpose to find which lead to a better estimate of 
𝜃. In particular, we do this by comparing the coverage probability 

(the proportion of time a confidence interval contains the true 

value of a parameter of interest) of 𝜃 based on estimators of 𝜏2 
by DerSimonian and Laird (1986), Paule and Mandel (1982), Sidik 
and Jonkman (2005) and the restricted maximum likelihood 
(REML) methods.  
 
The rest of the paper is organised as follows. Section 2 presents 

confidence interval, coverage probability and the estimators of 𝜏2 

considered in the analysis. Section 3 report on simulation study. 
Section 4 is the summary and conclusion. 
 
MATERIALS AND METHOD 
 
Methodology 
The statistical tool used for the analysis is the coverage 
probability introduced below. Also presented here are the models 
used to combine results from studies in meta-analysis. 
 
Confidence interval and coverage probability 
Confidence interval (CI) is an important and often underused area 
of statistical inference (Term, 2002). Confidence interval for a 
parameter of interest is a range of values defined based on a 
specified probability (confidence level) that the parameter of 
interest lies within it. An important statistical quantity associated 
with confidence interval is the coverage probability. In statistics, it 
is the proportion of time that the confidence interval contains the 
true value of the parameter of interest. If all assumptions used in 
defining a confidence interval are met, the confidence level which 
is the same as the nominal coverage probability will be equal to 
the true coverage probability. In Section 3, a simulation study is 
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conducted to determine the coverage probability of based on 
DerSimonian and Laird (1986), Paule and Mandel (1982), Sidik 

and Jonkman (2005) and REML estimators of 𝜏2.The estimator 
whose coverage probability of is closer to the nominal coverage 

probability is consider to lead to a better estimate of 𝜏2. 

 
Fixed-effect and random-effects models of meta-analysis 
Suppose the true effect size, θi  for study 𝑖, 𝑖 = 1, 2, … , 𝐾 is 

estimated by 𝑦𝑖 with variance 𝜎𝑖
2. The effect might be measured 

as mean difference, relative risks, risk difference or odds ratio. 
The fixed effect model assumes that all the included studies 
investigate the same population and therefore share a common 
location parameter. When the effect size estimates, 𝑦𝑖′𝑠 are 

sample means or mean differences, the fixed effect model is 
given by 
         𝑦𝑖 = 𝜃 + 𝑒𝑖                                                            (1) 

                                                

where 𝜃 is the true population treatment effect, 𝑒𝑖 ∼ 𝑁(0, 𝜎𝑖
2), 

𝜎𝑖
2 are the within-study variance, for 𝑖 = 1, 2, … , 𝐾. For other 

effect measures, approximate normality of 𝑦𝑖′𝑠 holds when the 
sample sizes 𝑛𝑖 of the studies are reasonably large. Appropriate 

estimates of the variances 𝜎𝑖2 are easily calculated for all effect 

measures used in meta-analysis and, for large within study 
sample sizes, can be treated as known constants (Viechtbauer, 
2007). In FEM, each study is assigned a weight proportional to 
the inverse of the within-study variance, which is denoted by 𝑤𝑖. 

The estimate of the population treatment effect parameter called 
combined effect in meta-analysis is estimated as a weighted 
mean of individual effect estimates given by 
 

 𝜃𝑓 = ∑ 𝒘𝒊𝒚𝒊/ ∑ 𝒘𝒊
𝑲
𝒊=𝟏

𝑲
𝒊=𝟏 .                          .                      (2) 

 
The variance of the combined effect is given by the inverse of the 

sum of weights (∑ 𝑤𝑖
𝐾
𝑖=1 )−1. Standard inference in FEM is 

based on approximate normality of the distribution of the 

combined effect 𝜃𝑓 ∼ 𝑁(𝜃, (∑ 𝑤𝑖
𝐾
𝑖=1 )−1). Therefore the 95% 

confidence intervals of the population treatment effect are given 
by 
 

   𝜃𝑓 ∓ 1.96(∑ 𝑤𝑖
𝐾
𝑖=1 )−1.                                                        (3) 

 
Cochran’s Q statistic 
 

  𝑄 = ∑ 𝑤𝑖(𝑦𝑖 − 𝜃𝑓)2𝐾
𝑖=1 ,                                                       (4) 

 
plays an important role in meta-analysis. It is widely used in 
inference on heterogeneity of treatment effects. The 𝑄 statistic is 

routinely assumed to follow the chi-squared distribution with 𝐾 −
1 degrees of freedom, 𝜒𝐾−1

2 , although this is true for very large 
sample sizes, see Hoaglin (2016) for details. 
 
In random-effects model (REM), the relationship between effect 
estimates and the population parameter, 𝜃 is described by 

 

 𝑦𝑖 = 𝜃𝑖 + 𝑒𝑖;  𝑒𝑖 ∼ 𝐹(0, 𝜎𝑖
2) 

                                              (5) 

𝜃𝑖 = 𝜃 + 𝜖𝑖;  𝜖𝑖 ∼ 𝐺(0, 𝜏2), 
 
                                                                                                                           

where 𝐹 𝑎𝑛𝑑 𝐺 come from an arbitrary short-scale families of 

distribution and 𝜎𝑖
2 𝑎𝑛𝑑 𝜏2 are the within- and between-study 

variances, respectively. The most popular choice is two normal 
distributions (Dogo, 2016). Then, marginally the random-effects 
model is defined by 
 

𝑦𝑖 = 𝜃 + 𝜉𝑖;  𝜉𝑖 ∼ 𝑁(0, 𝜏2 + 𝜎𝑖
2).               (6) 

 

The between-study variance, 𝜏2 describes the degree of 

inconsistency among the effect estimates. The special case 

where 𝜏2 = 0 implies that the effect sizes, 𝜃1 = 𝜃2 = ⋯ = 𝜃𝐾  
are homogeneous (Viechtbauer, 2007), and the resulting model 
reduces to fixed-effect model (FEM). The weights assigned to 
studies in REM is proportional to the inverse sum of the within- 

and between-study variances, 𝑤𝑖
∗ = 1/(𝜏2 + 𝜎𝑖

2). The 

combined effect also estimated as a weighted mean of individual 

effect estimates given by 𝜃𝑅 = ∑ 𝑤𝑖
∗𝑦𝑖/ ∑ 𝑤𝑖

∗𝐾
𝑖=1

𝐾
𝑖=1 . Similar to 

fixed-effect model, inference in REM is based on approximate 
normality of the combined effect.  
 

2.3 Estimation of the between-study variance, 𝝉𝟐 

Estimation of the between-study variance, 𝜏2 plays a crucial role 

in REM. There exists a number of methods for estimating 𝜏2, see 
Veroniki et al. (2015), but present here are the most commonly 
used methods proposed by DerSimonian and Laird (1986), Paule 
and Mandel (1982), Sidik and Jonkman (2005) and the restricted 
maximum likelihood (REML) method. In what follows, the 
coverage probabilities of the treatment effect based on the 
estimators shall be denoted by 𝐷𝐿, 𝑃𝑀, 𝑆𝐽, 𝑎𝑛𝑑 𝑅𝐸𝑀𝐿. These 

methods differs in terms of bias and precision in estimation of 𝜏2. 

In section 3, we investigate how the biases of the estimators 
affect the estimate of the treatment effect (combined effect) and 
by extension the coverage probability using simulations.  
 
DerSimonian and Laird (1986) method 
The DerSimonian and Laird (1986) method is given by  
 

                                        �̂�𝐷𝐿
2 =

𝑚𝑎𝑥 (0,
𝑄−(𝐾−1)

∑ 𝑤𝑖−
∑ 𝑤𝑖

2𝐾
𝑖=1

∑ 𝑤𝑖
𝐾
𝑖=1

⁄𝐾
𝑖=1

 ),                                           (7) 

Where 𝑄 is the Cochran 𝑄 statistic given in equation (3) 
 
Paule and Mandel (1982) method 
 

Denote 𝑤𝑖
∗(𝜏2) = 1

(𝜏2 + 𝜎𝑖
2)⁄ , the weights assigned to 

studies in REM as a function of 𝜏2. Define 𝑄(𝜏2) =

∑ 𝑤𝑖
2(𝜏2) (𝑦𝑖 − 𝜃(𝜏2))

2
𝐾
𝑖=1 . The Paule and Mandel (1982) 

estimator of 𝜏2 is calculated from the solution of the estimating 
equation for the expected value of the 𝑄 statistic under the null 

hypothesis given by  
 

𝑄(𝜏2) − (𝐾 − 1) = 0.                                                      (8) 
 
The Paule and Mandel (1982) estimator is statistically optimal, in 
the sense that the estimator is not biased and has minimum 
variance when the distribution of the effect estimates is normal. 
Further, the method does not generally require any normality 
assumptions (DerSimonian and Kacker, 2007).  
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Sidik and Jonkman (2005) method 
 
The Sidik and Jonkman (2005) estimator is given by 
 

�̂�𝑆𝐽
2 =

�̂�0
2

𝐾−1
∑ 𝑤𝑖(𝑦𝑖 − 𝜃0)

2𝐾
𝑖=1 ,                                              (9) 

 

Where 𝜃0
2 =

1

𝐾
∑ (𝑦𝑖 − �̅�)2𝐾

𝑖=1 , �̅� is unweighted mean of the 

𝑦𝑖𝑠, 𝑤𝑖 = 1
(�̂�0

2 + 𝜎𝑖
2)⁄  and 𝜃0 =

∑ 𝑤𝑖𝑦𝑖
𝐾
𝑖=1

∑ 𝑤𝑖
𝐾
𝑖=1

⁄ . 

 
Restricted maximum likelihood method  
 

The restricted maximum likelihood (REML) estimator of 𝜏2 is 

given by an iterative solution of the equation 
 

�̂�𝑅𝐸𝑀𝐿
2 = 𝑚𝑎𝑥 (0,

∑ 𝑤𝑖
∗2[(𝑦𝑖−�̂�𝑅𝐸𝑀)

2
−𝜎𝑖

2]𝐾
𝑖=1

∑ 𝑤𝑖
∗2𝐾

𝑖=1

+
1

∑ 𝑤𝑖
∗2𝐾

𝑖=1

),    (10) 

 
 
Simulation study 
 
Design 

To evaluate the effect of estimators of 𝜏2 discussed in Section 2 

on the coverage probability of the population treatment parameter 
𝜃, a simulation study is conducted. The observed treatment 

effects were generated using the normal distribution, 𝑦𝑖 ∼

𝑁(𝜃, 𝜏2 + 𝜎𝑖
2), where 𝜃 is the population treatment effect. The 

studies sizes were generated using the normal distribution, 𝑛𝑖 ∼

𝑁 (𝑛,
𝑛

4
) rounded to the nearest whole number and truncated at 

3, 𝑛 is the average sample size of the studies. Estimates of 

sample variances, �̂�𝑖
2 were generated using the scaled chi-

square distribution, �̂�𝑖
2 ∼

𝜎𝑖
2

𝑛𝑖
𝜒𝑛𝑖−1

2 . This choice ensures that the 

expected value, 𝐸[�̂�𝑖
2] = 𝜎𝑖

2. Estimated variances that 

correspond with the treatment effect 𝑦𝑖  are 𝑆𝑖
2 =

�̂�𝑖
2

𝑛𝑖
⁄ . The 

data for each simulated meta-analysis consisted of a total of 𝐾 

estimates of observed treatment effects, their estimated 

variances, and corresponding sample sizes {(𝑦𝑖 , 𝑆𝑖
2, 𝑛𝑖), 𝑖 =

1, 2, … , 𝐾}. For each dataset for a meta-analysis, the coverage 

probability of 𝜃 was calculated based on DerSimonian and Laird 

(1986), Paule and Mandel (1982), Sidik and Jonkman (2005) and 
the restricted maximum likelihood 
(𝐷𝐿, 𝑃𝑀, 𝑆𝐽, 𝑎𝑛𝑑 𝑅𝐸𝑀𝐿, 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦) methods of 

estimating 𝜏2. The coverage probability was calculated based on 
10000 simulations for each of the following combinations of 
variables chosen to reflect a realistic range of parameter values: 

𝜎2 = 1, 𝜃 = (0.00, 0.05, 0.10, 0.15, 0.20), 𝜏2 =
(0.02, 0.04, 0.06, 0.08, 0.10), 𝑛 = (20, 30, 40), and 𝐾 =
(20, 30, 40). 

 
RESULTS 

A desired estimator of 𝜏2 is the estimator that yielded a coverage 
probability of 𝜃 that is closer to the nominal level. Figure 1 shows 

the coverage probabilities of 𝜃 produced based on estimators of 

𝜏2 by DerSimonian and Laird (1986), Paule and Mandel (1982), 
Sidik and Jonkman (2005) and restricted maximum likelihood 
estimate (𝐷𝐿, 𝑃𝑀, 𝑆𝐽, 𝑎𝑛𝑑 𝑅𝐸𝑀𝐿) when 𝜃 = 0. For smaller 

values of 𝜏2, coverage probabilities produce by 𝑅𝐸𝑀𝐿 are 
unsatisfactory, and are substantially far above the nominal level. 
Similar behaviour is also observed in Figure 2 when 𝜃 = 0.15. 

However as the values of 𝜏2 increased, the coverage probabilities 

produce by 𝑅𝐸𝑀𝐿 gradually improve, and eventually tends to the 
nominal level. 
 
On the other hand, 𝐷𝐿, 𝑃𝑀, 𝑎𝑛𝑑 𝑆𝐽 yielded coverage 
probabilities that generally fall below the nominal level. It is 
important to note that the coverage probabilities produced by 

these estimators are better compared to 𝑅𝐸𝑀𝐿 when 𝜏2 ≤
0.03. Although there is no much difference between the coverage 

probabilities yielded by 𝐷𝐿, 𝑃𝑀, 𝑎𝑛𝑑 𝑆𝐽, the coverage 

probability of 𝐷𝐿 is unsatisfactory when 𝜏2 = 0.02, with 
coverage lower as 93%, far below the nominal level of 95%.  
 
In summary, we can conclude on the basis of simulations that 
𝑅𝐸𝑀𝐿 yielded the most accurate coverage probabilities when 

effect estimates are substantially heterogeneous. 
 

 
Figure 1: The coverage probability, 𝛼 of the population treatment 

effect 𝜃 calculated based on DerSimonian and Laird (1986), 

Paule and Mandel (1982), Sidik and Jonkman (2005) and the 
restricted maximum likelihood (𝐷𝐿, 𝑃𝑀, 𝑆𝐽, 𝑎𝑛𝑑 𝑅𝐸𝑀𝐿) 

estimators of 𝜏2 against 𝜏2 when 𝜃 = 0. 
𝐷𝐿, 𝑃𝑀, 𝑆𝐽 𝑎𝑛𝑑 𝑅𝐸𝑀𝐿 are represented by purple, red, 

darkgray and chartreuse lines, respectively, and the black line 
represent the nominal coverage probability is set at 95%. 𝐾 is the 

number of studies for each meta-analysis and 𝑛 is the average 

sample size of studies. 
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Figure 2: The coverage probability, 𝛼 of the population treatment 

effect 𝜃 calculated based on DerSimonian and Laird (1986), 

Paule and Mandel (1982), Sidik and Jonkman (2005) and the 
restricted maximum likelihood (𝐷𝐿, 𝑃𝑀, 𝑆𝐽, 𝑎𝑛𝑑 𝑅𝐸𝑀𝐿) 

estimators of 𝜏2 against 𝜏2 when 𝜃 = 0.15. 
𝐷𝐿, 𝑃𝑀, 𝑆𝐽 𝑎𝑛𝑑 𝑅𝐸𝑀𝐿 are represented by purple, red, 

darkgray and chartreuse lines, respectively, and the black line 
represent the nominal coverage probability is set at 95%. 𝐾 is the 

number of studies for each meta-analysis and 𝑛 is the average 

sample size of studies. 

 
Figure 3: The coverage probability, 𝛼 of the population treatment 

effect 𝜃 calculated based on DerSimonian and Laird (1986), 

Paule and Mandel (1982), Sidik and Jonkman (2005) and the 
restricted maximum likelihood (𝐷𝐿, 𝑃𝑀, 𝑆𝐽, 𝑎𝑛𝑑 𝑅𝐸𝑀𝐿) 

estimators of 𝜏2 against 𝜏2 when 𝜏2 = 0.08. 

𝐷𝐿, 𝑃𝑀, 𝑆𝐽 𝑎𝑛𝑑 𝑅𝐸𝑀𝐿 are represented by purple, red, 
darkgray and chartreuse lines, respectively, and the black line 

represent the nominal coverage probability is set at 95%. 𝐾 is the 

number of studies for each meta-analysis and 𝑛 is the average 

sample size of studies. 
 

On the other hand, 𝐷𝐿, 𝑃𝑀, 𝑎𝑛𝑑 𝑆𝐽 yielded better coverage 

probabilities compared to 𝑅𝐸𝑀𝐿 when treatment effects are 

homogeneous or moderately heterogeneous, although the 
coverage yielded by the three estimators are generally below the 
nominal level. 
 
Summary and Conclusion 
The main objective in meta-analysis is to combine results from 
different independent studies in order to obtain an accurate 
estimate of treatment effect and provide evidence base for 
decision making. There are two models, fixed-effect and random-
effects models use to combine results in meta-analysis. Of the 
two models, random-effects model is the most widely use, see 
Hunter and Schmidt (2000), due to its ability to account for 
variation expected due to treatment effects or studies difference. 
This additional variability to the sampling variability is called the 

heterogeneity 𝜏2, which quantify the degree of inconsistency 
among the treatment effects. There are different ways to estimate 

𝜏2, see Veroniki et al. (2015), and each of the methods differs in 

terms of precision and bias in estimating 𝜏2.  In Section 2, the 

estimate of the population treatment effect in REM, 𝜃𝑅𝐸𝑀  is a 

function of 𝜏2, therefore the choice of the estimator of 𝜏2 is a 
crucial issue in random-effects meta-analysis. 
 
This paper compares the effect of four estimators by DerSimonian 
and Laird (1986), Paule and Mandel (1982), Sidik and Jonkman 
(2005) and the restricted maximum likelihood method 
(𝐷𝐿, 𝑃𝑀, 𝑆𝐽, 𝑎𝑛𝑑 𝑅𝐸𝑀𝐿) on random-effects meta-analysis. In 

particular, the paper seeks to identify which of the estimators 
considered yields an accurate coverage probability for the 
population treatment effect 𝜃. Simulations reveal that each of the 

estimators considered leads to different coverage probability for 
𝜃. 𝑅𝐸𝑀𝐿 estimator yielded the most accurate coverage 

probability for large values of 𝜏2. This result is consistence with 

the findings in Viechtbauer (2007) that of all estimators, the 

𝑅𝐸𝑀𝐿 possess the properties in estimating 𝜏2 when the 
treatment effects are highly heterogeneous.  In contrast to 
𝑅𝐸𝑀𝐿, 𝐷𝐿, 𝑃𝑀, 𝑎𝑛𝑑 𝑆𝐽 perform better for smaller and 

moderate vales of 𝜏2. Therefore, the restricted maximum 

likelihood estimator of 𝜏2 is recommended for use in random-
effects meta-analysis when treatment effects are highly 
heterogeneous, while any of the estimators by DerSimonian and 
Laird (1986), Paule and Mandel (1982) and Sidik and Jonkman 
(2005) can be used for homogeneous and moderately 
heterogeneous treatment effects. 
 
The observed effect estimates use in the simulations were 
generated based on normality assumption. However, approximate 
normality of treatment effects only holds when effect estimates 
are sample means or mean difference. For other effect measures 
such as binary effects, normality of the distribution of the effect 
estimates only holds true when the sample sizes of studies are 
large, which is not often attainable in practice. For this reason, 

further investigation on the effect of estimators of 𝜏2 given 
different effect size on random-effect meta-analysis is 
recommended. Another important statistical tool recommended 
for such an investigation is the use of mean square error (mse). 
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