FULL LENGTH RESEARCH ARTICLE

EFFICACY OF PERMETHRIN INSECTICIDE TESTED AGAINST POPULATIONS OF ANOPHELES AND Aedes FROM DIFFERENT LARVAL HABITATS IN SOUTHERN GUINEA SAVANNA, NIGERIA

*SOW, G. J.*, NDAMS, I. S.*, KOGI, E.*, TUKUR, Z.2 & ADAMU, H.3

Department of Biological Sciences
1Ahmadu Bello University, Zaria, Nigeria
2Bayero University, Kano, Nigeria
3Department of Biology
College of Education, Waka-Biu, Borno State, Nigeria

*Corresponding author* charlygudzan@yahoo.co.uk

ABSTRACT
The resistance status of Anopheles gambiae s.l. Giles, 1902 and Aedes aegypti Linnaeus, 1762 collected from different breeding habitats in southern guinea savanna of Kaduna State was investigated. The larvae were collected from swamps, rock and mountain pools, reared and fed with baker’s yeast and grounded biscuits in separate containers to adulthood. Susceptibility test was conducted on the adult mosquitoes using 0.75 % permethrin impregnated paper embedded in World Health Organization (WHO) diagnostic test kit following standard procedure. Knockdown rate was recorded at 5 min interval for 1 hr and the final mortality was determined at 24 hr post exposure time. Fifty (50) and ninety five (95) percent knockdown times (KDT50 and KDT95) were evaluated using the probit analysis. The result shows that the knockdown for all mosquitoes collected from the three breeding habitats were 100 %. The percentage mortalities for Anopheles from swamps, rock pools and Aedes from mountain pools were 100 % while 98.7 % was obtained for Anopheles from mountain pools. Fifty (50) and ninety five (95) percent knockdown times were between 10.72-12.45 minutes and 21.39-24.56 min respectively. The results show that all mosquitoes tested are susceptible to 0.75 % permethrin which suggest that the insecticide can be used effectively for the control of these vectors in the ecological zone.

Key words: Anopheles, Aedes, resistance, insecticide, permethrin, breeding habitats,

INTRODUCTION
The most effective way to prevent malaria and other mosquito-transmitted diseases such as yellow fever, dengue haemorrhagic fever, bancroftian filariasis e.t.c. has been to reduce human-vector contact using chemical insecticides (Chareonviriyaphap et al. 2000). This is achieved through the control of the vector populations by the use of insecticide treated nets (ITNs) and other material to prevent mosquito biting at the individual and household level (Curtis & Townsend 1998). Today, the main thrust for roll back malaria strategy lies in use of insecticide treated nets (ITNs) (Hemingway & Bates 2003). Therefore, the development of resistance by mosquito to conventional insecticides is a threat to the control of mosquito-borne diseases (WHO 1992).

Currently, the only class of insecticides authorized by World Health Organisation (WHO) for use on bed nets are the pyrethroids (Hemingway & Bates 2003). They are preferred because they have been found to be effective with a strong excito-repellent effect on mosquitoes and yet, have lower mammalian toxicity than organochlorines, carbamate and organophosphate compounds and therefore less likely to bioaccumulate (Mittal et al. 1991). Pyrethroid insecticides have been effectively used against several species of insects that includes the German cockroach (Pridgeon et al. 2002), house fly (Shono et al. 2002), Cotton bollworm (Ru et al. 1998), Spodoptera littoralis (Gammer 1980) and tobacco budworm (Park et al. 2000) as well as for the control of dipterous insects (Shono et al. 2002). Synthetic pyrethroid (also known as emergency insecticide) such as permethrin [(3-phenoxyphenyl)methyl(+)-cis,trans-3-(2,2-dichloroethenyl)]-2,2-dimethylcyclop propane carboxylate], when used to treat nets, played a dual role of killing the mosquitoes in addition to acting as an irritant that repels them from the net (Rozendaal 1989).

Since the insecticide is the key component of Roll Back Malaria, there is concern that emergence of resistance in mosquito populations could reduce the efficacy of ITNs. This paper reports the efficacy of permethrin insecticide on Anopheles and Aedes populations collected from different breeding habitats in the southern guinea vegetation zone of Kaduna State, Nigeria.

MATERIALS AND METHODS
Collection of immature stages and rearing: Immature stages (larvae and pupae) of Anopheles and Aedes mosquitoes were collected from swamps, rock and mountain pools which serve as breeding habitats. The larvae of Anopheles were distinguished from Aedes according to the way they lay horizontally to the water surface due to lack of siphon unlike Aedes species (Smart 1956). The larvae and pupae were reared in plastic containers until adult emergence, during which they were fed with baker’s yeast or fish meal. Water was changed periodically as it becomes murky.

Susceptibility test: This was performed using standard WHO diagnostic test kit (WHO 1981) on the newly emerged one day old adults on 0.75 % permethrin-impregnated paper. Mosquitoes were first kept in holding tube for one hr, during which all unlit mosquitoes were removed. The mosquitoes were then exposed to the test papers in batches of 20 to 25 per exposure tube for 1 hr in a normal vertical position at room temperature and the knockdown rate recorded at 5 min interval during period of exposure. Thereafter, they were gently transferred to holding tubes with cotton wool moistened with 10 % sucrose solution and final mortality was recorded 24 hr post exposure. Control samples were exposed to untreated papers. All surviving and dead mosquitoes together with the control sample were identified using morphological keys (Huang & Ward 1981, Gillies & Coetzee 1987), the number counted and recorded and the percentage mortality calculated. The KDT50 and KDT95 were evaluated using the probit analysis (Finney 1971).
RESULTS
Out of the 444 mosquito specimens tested against 0.75% permethrin, 373 (84 %) were *An. gambiae* s.l. and 71 (16 %) *Ae. aegypti*. Of the anophelines, 149 (33.6 %) were from swamps, 74 (16.7 %) from rock pools and 150 (33.8 %) from mountain pools while all the 71 *Ae. aegypti* were from mountain pools.

100 % mortality was recorded for *Anopheles* and *Aedes* from swamps, rock pools and mountain pools and 98.7 % mortality for *Anopheles* from mountain pools. Mortality for control groups was consistently less than 5 %.

![Graph showing knockdown percentage vs time of exposure](image)

**FIG. 1. MORTALITY RATES OF *Anopheles* and *Aedes* MOSQUITOES FROM DIFFERENT BREEDING HABITATS TESTED ON 0.75 % PERMETHRIN.**

<table>
<thead>
<tr>
<th>Species</th>
<th>Larval habitats</th>
<th>No. exposed</th>
<th>No. survived</th>
<th>%e Mortality</th>
<th>KDT50 (min)</th>
<th>KDT95 (min)</th>
<th>% knockdown at 1 hr</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>An. gambiae</em></td>
<td>Swamps</td>
<td>149</td>
<td>149</td>
<td>100</td>
<td>10.72</td>
<td>22.91</td>
<td>100</td>
</tr>
<tr>
<td><em>An. gambiae</em></td>
<td>Rock pools</td>
<td>74</td>
<td>74</td>
<td>100</td>
<td>11.75</td>
<td>21.88</td>
<td>100</td>
</tr>
<tr>
<td><em>An. gambiae</em></td>
<td>Mountn pools</td>
<td>150</td>
<td>149</td>
<td>98.7</td>
<td>12.45</td>
<td>24.56</td>
<td>100</td>
</tr>
<tr>
<td><em>Ae. aegypti</em></td>
<td>Mountn pools</td>
<td>71</td>
<td>71</td>
<td>100</td>
<td>11.49</td>
<td>21.38</td>
<td>100</td>
</tr>
</tbody>
</table>

**TABLE I. THE KDT50 AND KDT95 VALUES AFTER ONE HR EXPOSURE TO PERMETHRIN INSECTICIDE IN EMERGED ADULT MOSQUITOES.**

DISCUSSION
In this study, the two species of mosquitoes tested were susceptible to 0.75 % permethrin. The swamps sampling sites have principally shrubs and tall grasses with the surroundings dominated by agricultural crops like yams, cocoyams, maize and guinea corn. The peasant farmers do not use chemical insecticides or pesticides in the control of any pest, so there is less chance that appreciable pesticide residue would be found in the water body that can exert pressure in the insects leading to the development of resistance. Even where it is necessary to apply fertilizer, the method of application is point application and mostly in shallow holes dug by the farmers, so that the fertilizer may not to be washed away by rain.

There was little or no agricultural activities on the mountain areas where samples were collected and since the pools are seasonal, there is less likelihood that heavy metals may accumulate which may exert pressure on the insects leading to resistance. However, it is necessary to conduct water analysis before making deductions.

The knowledge of the effect of breeding habitats on the resistance of insect vectors is significant when controlling immature stages of these insects in the aquatic habitats. Diabate et al. (2002) worked in Burkina Faso and showed that resistance was affected by breeding habitats of mosquitoes because insecticides are used less in the rice fields than in cotton-growing areas and the selection pressure was therefore lower in the rice fields. He added that in the dry season, mosquitoes were susceptible to insecticides tested because insecticides for control of pests are not in use at that time. However, in the rainy season, use of insecticides to protect cotton plants was common and this exerts selective pressure on the mosquito population and results in an increase in resistance.

Both species of mosquitoes tested – *An. gambiae* and *Ae. aegypti* were found susceptible to peremtrin by WHO standard (Chandre et al. 1999) with no appreciable difference between the two even though significant difference in susceptibility to ITNs by some species.

_Gudzan et al. (2007) SWJ:5-8_ Efficacy of Permethrin Insecticide
of mosquitoes has been observed (Lindblade et al. 2006). The absence of significant susceptibility to the test insecticide suggest that permethrin when used to treat bed nets will be highly effective for use against mosquitoes in the areas of study.

The absence or very low resistance of the mosquito population observed in the present study is similar to the report of Stump et al. (2004) on the long term use of insecticide treated nets in western Kenya based on the presence of the knockdown resistance (kdr) gene. The kdr mechanism is a resultant of mutations originating from the voltage-gated sodium channel, the target site for DDT and pyrethroids and is one of the two most important forms of biochemical resistance that occur due to detoxifying activities of enzymes like esterases, mixed function oxidases and transferases (Brodgon & McAllister 1998).

Fifty and ninety five knockdown times (KDT50 and KDT95) observed in the present study compare well with those from other studies for Anopheles gambiae populations that are categorized as susceptible (Chandre et al. 1999; Diabate et al. 2002; Kristan et al. 2003; Kamau & Vulule 2006). Thus these data suggest that permethrin will have high efficacy when used in the study area. By implication, the bed nets treated with this insecticide will have a dual role preventing the mosquitoes from biting people sleeping under them, but will also kill them as they perch on the nets, thereby reducing mortality and morbidity of humans to mosquitoes-borne diseases.

Brodgon & McAllister (1998) argued that for insecticide resistance to be a concern, the level must be high enough to compromise the efficacy of the intervention programmes employing the insecticides being used for vector control. This being true, the insecticide resistance level in this study is very insignificant to compromise the efficacy of any intervention programmes employing permethrin insecticide for vector control.

The results obtained in this study will guide in the choice of insecticides for use in vector control programmes in the area. In addition, the data obtained provide baseline information needed in the monitoring of the development of resistance to the insecticide arising either due to selective pressure from the use of insecticides and pesticides or through migration to the area of mosquitoes with insecticide resistant genes.

REFERENCES:


WHO 1981. Instructions for determining the susceptibility or resistance of adult mosquitoes to organochlorine, organophosphate and carbamate insecticide-diagnostic test. WHO/VBC/81.806, Geneva, Switzerland