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ABSTRACT 
In this work, we investigate the contrasts properties of the optimal semi-
Latin squares with side six and block size two with a view to discriminating 
amongst them. The Variances, as well as the average Variance of the 
estimate of elementary contrasts of treatments was computed for each 
square with the aid of MATLAB and the results compared with each other. 
From the results, the average variance of elementary treatment contrasts 
for the three squares Ʌ1, Ʌ2 and Ʌ3 is approximately the same. Again, the 
squares Ʌ2 and Ʌ3 have the same and minimal number of distinct 
variances of elementary contrasts compared to Ʌ1, hence preferable to 
Ʌ1. Furthermore, Ʌ3 has a minimal value of the maximum variances of 
contrasts amongst these squares. Thus, Ʌ3 becomes the most preferable 
square amongst all of them; while Ʌ2 is preferable to Ʌ1. 

 
Keywords: Elementary contrast, optimal design, efficiency factor, regular-
graph design, quotient block design, connected design. 
 
INTRODUCTION 
An         semi-Latin square is a row-column design with   rows and 

  columns which contains    distinct symbols         called 

treatments that appear in such a way that there are exactly   symbols in 

each row-column intersection called block (or cell), and each symbol 
occurs only once in each row and also once in each column: see, for 
instance, Bailey and Royle (1997), Bedford and Whitaker (2001), as well 
as Soicher (2013). A semi-Latin square generalizes Latin squares and has 
applications in areas such as Agricultural experiments, consumer testing, 
and human-Machine interaction: see, for, instance, Preece and Freeman 
(1983), Bailey (1988, 1992), Soicher (2013). A semi-Latin square with side 
six and block size two is indeed a         semi-Latin square. 
 
In the choice of designs for experimentation, the optimal ones are usually 
sought for. Optimal designs are known to have high efficiency factors. The 
four widely used measures of the efficiency factor of a design include: 

          and    measures. A design within a given class is 

considered optimal in that class with respect to a given criterion if it 
maximizes the value of the efficiency factor corresponding to such criterion 
among all the designs in the same class with it: see Bailey and Royle 
(1997). 
 
Contrasts of treatments are important in determining the efficiency of a 
design. According to Bailey and Royle (1997), a design having a high 
efficiency factor would tend to have low variances of within-block 
estimators. The average of the variances of the estimates, ̂ - ̂ , of the 

contrasts   -  , for all distinct pairs       of treatments of a design gives a 

measure of efficiency of the design: see John (1971). Furthermore, a 
design is optimal if it has a minimal number of distinct pairwise treatment 
variances amongst all the designs in the same class with it: see Cameron 

et al. (2003). 
 
Chigbu (1999) found three optimal         semi-Latin squares using 

the         and   optimality criteria. Chigbu (2003) observed that 

these squares differ in their treatment concurrences, which suggests 
inherent differences amongst them. He found the best square amongst 
them using an analytic approach by computing for each square and 
comparing the variances of elementary treatment contrasts amongst the 
squares; but did not further classify and/or discuss the sameness or 
otherwise of the other two good squares. Subsequently, Chigbu (2004) 
established the same square due to Chigbu (2003) as the best, while 
rating the other two squares as the same using a numerical approach 
which involves computation of a generalized inverse of the information 
matrix of each square. Uto and Chigbu (2010) ascertained the same 
square due to Chigbu (2003, 2004) as the best and further distinguished 
between the remaining two squares by computing and comparing the 
variances of the differences in concurrences among the squares.  
 
Bailey and Royle (1997) found optimal        semi-Latin squares 

using the           and   optimality criteria which were applied to 

its quotient block design. For each of these criteria, they found the optimal 
semi-Latin square among regular-graph semi-Latin square designs of that 

size. Though their   and    optimal designs were distinct, they found 

the same square to be optimal under the    and   criteria 

 
In this paper, we investigate the contrasts properties of these squares with 
a view to discriminating amongst them. 
 
PRELIMINARIES 
Generally, in optimal block design theory, a regular-graph design, when it 
exists, provides the basis for selecting optimal designs, since an optimal 
regular-graph design is known to be universally optimal over all the 
designs in the same class with it: see, for instance, Bailey and Royle 
(1997). The semi-Latin squares considered in this paper, were adapted 
from Bailey and Royle (1997) and are designated Ʌ1, Ʌ2 and Ʌ3. They are 

presented in Tables 1, 2 and 3, respectively. 
 
Table 1: The semi-Latin Square Ʌ1 

0 1 8 A 4 5 3 6 2 B 7 9 

3 5 0 2 7 A 1 8   6 9 4 B 

6 8 5 9 0 3 7 B 1 4 2 A 

9 B 1 7 2 6 0 4 3 A 5 8 

2 7 4 6 8 B  9 A 0 5 1 3 
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4 A 3 B 1 9 2 5 7 8 0 6 

 
Table 2: The semi-Latin square Ʌ2 

0 5 4 A 3 8 2 7 6 9 1 B 

4 9 2 8 0 7 6 B 1 A 3 5 

1 8 0 6 4 B 3 A 2 5 7 9 

2 B 1 7 5 A 0 9 3 4 6 8 

3 6 5 B 2 9 1 4 7 8 0 A 

7 A 3 9 1 6 5 8 0 B 2 4 

 
Table 3: The semi-Latin square Ʌ3 

0 1 5 A 2 7 4 9 6 B 3 8 

4 B 2 3 1 9 8 A 5 7 0 6 

3 6 0 8 4 5 1 B  2 A 7 9 

5 8 9 B 0 A 6 7 1 3 2 4 

7 A 4 6 3 B 0 2  8 9 1 5 

2 9 1 7 6 8 3 5 0 4 A B 

 
Ʌ1 is    and   optimal among semi-Latin squares of that size, while 

Ʌ2 and Ʌ3 are    and    optimal, respectively. Each of these squares 

is a regular-graph design, with its quotient block design having treatment 
concurrences equal to zero or one. 
 
 A regular-graph design has its treatment concurrences not differing in 
value by more than one in absolute terms: see, for instance, Cheng 
(1978), Paterson (1986), as well as Bailey (1992). Also, a semi-Latin 
square with       whose quotient block design is a regular-graph 

design is a Trojan square: see Bailey (1992). 
 
We note that semi-Latin squares are usually analyzed as incomplete block 
designs; and in the analysis of incomplete block designs, every treatment 
contrast is of interest, and needs to be estimated and compared through 
the variance of its estimator: see Chigbu (2004). In some designs, such as 
the ones in this work, all the elementary contrasts are estimable from intra-
block comparisons. Those designs with such attribute are thus connected 
designs: see, for example, Raghavarao (1971). 
 
Definition 1 (Contrast) 

A contrast in treatment parametersis a linear function (or combination)      

of these parameters whose sum of entries of the coefficient vector   is 

zero; where   is the vector of treatment parameters. It is said to be an 

elementary contrast if   has only two non-zero elements 1 and -1. 

 
Elementary contrasts of treatment effects show the comparison of 
treatments involved in them and it is very desirable to estimate all the 
elementary contrasts. Fundamentally, contrasts of the form   -        

are called elementary contrasts. The best linear unbiased estimator of   -
   is  ̂ - ̂ ,          : see Raghavarao (1971). 

 
For a block design with    treatments and equal replication  , the 

variance of the within-block estimator of     is a product of three 

quantities: the variance of the response on each plot,   ; the scale factor 
∑  

 

 
  and a number      ∑   

 , where   is any generalized inverse of 

the scaled information matrix,            , of the design: see, for 

instance, Bailey and Royle (1997). Hence, 
 

Var (    ̂                                    (1) 

 

 
METHODS 
Given the incidence matrix             of the quotient block design of 

each square under consideration which is a         treatments-by-

blocks matrix whose      th entry is either 0 or 1 (since each of them is a 

binary design) indicating the number of times that treatment   occurs in 

block  ; the corresponding scaled information matrix is  

 

                                       (2) 
 

where   is a conformable identity matrix. The matrix 

 

                              (3) 
 

where   is an all-ones matrix, is a generalized inverse of   : see for 

instance, Cameron et al. (2003) and Chigbu (2004). For    , the 

generalized inverse matrix    , of    for each square is obtainable.  
 
We remind that     is a contrast if ∑    . Again, for an elementary 

contrast,            and   (  
 
  
)      , such that       -   . Let 

 ̂    (  
 
  
) denote the estimator of  , then     ̂            , 

    . For each square under investigation, the number of replications 

   . By ignoring the constant   , setting    , and      , 
equation (1) is equivalent to 
 

       ̂                                     (4) 

 
which reduces to  
 

                
        

       
   

     
      ,                  (5) 

 

for elementary contrasts; where     
  , for instance, is the (    )th entry of 

the generalized inverse matrix,      
 
A MATLAB program was written to compute the variance of the estimate of 
elementary contrasts for all possible pairs of distinct treatments    and 

   (    ), in each design; as well as the average of these variances. The 

results were then compared for purposes of discrimination amongst the 
squares. The square which has a minimal number of distinct variances of 
these contrasts, and at the same time a minimal value of the maximum 
variance amongst them is considered the most preferable. 
 
 
 
RESULTS AND DISCUSSION 
The computed variances of the sixty-six (66) estimated elementary 
contrasts of treatments, alongside their associated frequency for the 
squares Ʌ1, Ʌ2 and Ʌ3 are displayed in Tables 4, 5 and 6, respectively. 
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Table 4: Variances (V) of elementary treatment contrasts with their corresponding frequency (F) for Ʌ1 

Ʌ1 
V 0.5945 0.6072 0.6124 0.6161 0.6280 0.6667 0.6838 0.6875 0.7143 0.7195 0.7500 

F 8 8 8 4 8 4 8 8 1 8 1 

 
 
 
Table 5: Variances (V) of elementary treatment contrasts with their 
corresponding frequency (F) for Ʌ2 

Ʌ2 
V 0.6111 0.7000 0.7111 

F 36 18 12 

 
Table 6: Variances (V) of elementary treatment contrasts with their 
corresponding frequency (F) for Ʌ3  

Ʌ3 
V 0.6061 0.6364 0.6970 

F 30 6 30 

 
The average of the variances of these contrasts for each square was 
obtained to be approximately the same in value (0.65, to two decimal 
places). Hence, the squares are equally optimal based on this criterion. 
 
Furthermore, from Table 4, it is obvious that the square Ʌ1 has eleven 
distinct values for the variance of these contrasts; while for Ʌ2 and Ʌ3, 

each of them has three distinct values of this variance, which is 
comparatively minimal: see Tables 5 and 6, respectively. Thus Ʌ2 and Ʌ3 

are equally optimal and preferable to Ʌ1 with respect to this criterion.  

 
Again, in discriminating between Ʌ2 and Ʌ3; we observe that for Ʌ3, the 

contrasts have a maximum variance of 0.6970, which is minimal compared 
to that exhibited by Ʌ2 whose maximum variance of contrast is 0.7111: 
see Tables 6 and 5, respectively. Hence, on the basis of this criterion, Ʌ3 
is preferable to Ʌ2. 

 
However, we observe further that the 30 contrasts in Ʌ3 whose variance is 

0.6970, the maximum value for this square, are:      ,      ,      , 

      ,             ,      ,      ,      ,       ,      ,      , 

     ,       ,      ,      ,       ,      ,      ,      ,       , 

     ,       ,       ,       ,       ,      ,       ,        and 
       ; while for Ʌ2, the 12 contrasts with a variance of 0.7111 which 

coincide with the maximum for this square are:      ,      ,     , 

      ,      ,       ,      ,       ,      ,              , and 
      ; and for Ʌ1, the only contrast which produce the variance of 

0.7500, which is the maximum for this square is      . 
 
CONCLUSION 
We have obtained the variances of the estimate of all the 66 elementary 
treatment contrasts for each of the squares under consideration. Hence, 
they are all connected designs. The average variance of these elementary 
treatment contrasts for each square is approximately the same. The 
squares Ʌ2 and Ʌ3 have the same and minimal number of the 

aforementioned distinct pairwise treatment variances amongst these 
squares, which makes them preferable to Ʌ1. Again, Ʌ3 has a 

comparatively minimal value of the maximum pairwise treatment 
variances, thus preferable to Ʌ2. Hence, on the basis of our discrimination 
criteria, we have found Ʌ3 to be the most preferable square amongst 
them, for experimentation; while Ʌ2 is preferable to Ʌ1. 
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