
Science World Journal Vol 9 (No 4) 2014 
www.scienceworldjournal.org 
ISSN 1597-6343 

Modeling The Effect Of Bandwidth Allocation On Network Performance 
 

MODELING THE EFFECT OF BANDWIDTH ALLOCATION ON 
NETWORK PERFORMANCE 
 
 
Moses E. Ekpenyong1* and Paul J. Udoh2 

 
1Department of Computer Science, University of Uyo, Nigeria 
mosesekpenyong@{uniuyo.edu.ng, gmail.com} 
2Department of Mathematics and Statistics, University of Uyo, Nigeria 
pauludoh@uniuyo.edu.ng 
 
*Corresponding Author 
 
 
ABSTRACT 
In this paper, a new channel capacity model for interference-
limited systems was obtained by transforming the Shannon-
Hartley theorem for channel capacity. To emulate an 
operational system, a dashboard Motorola monitoring device 
was used to collect data from a group of Base Stations (BSs) 
serving (a section of) the Nigerian air space and belonging to 
one of the existing network carriers. Our findings revealed 
that the uplink and downlink throughputs of the existing 
system were not impressive even when there was uniform 
sharing of bottlenecks across the BSs. Using MATLAB, 
simulations were then performed by extending these data, 
subject to ideal environmental constraints. Results obtained 
revealed the following: (i) The Shannon-Hartley model 
performed as expected for no-interference systems (TDMA 
and FDMA), but as the bandwidth improved, only limited 
number of users could access the network in the presence of 
increased SNR; (ii) The proposed model showed improved 
performance for CDMA networks, but further increase in the 
bandwidth did not benefit the network; (iii) A reliability 
measure such as the spectral efficiency is therefore useful to 
redeem the limitation in (ii). 
 
Keywords: Coverage capacity, CDMA, mobile network, 
network throughput.  
 
INTRODUCTION  
Wireless network is one of the rapidly growing aspects in 
today’s communication technology. Advances in interactive 
multimedia applications such as audio phone, movie/video 
on demand, video conferencing, video gaming, etc., have 
resulted in spectacular studies on the progress of wireless 
communication systems. These advances have necessitated 
the continuous transmission of data, thus placing high 
demands for increased bandwidth. Consequently, bandwidth 
has become a critical resource in wireless networks, 
prompting the employment of efficient mechanisms for 
available bandwidth utilization. With the recent reduction in 
cell size, coupled with the increased demand for wireless 
connectivity, limitations are however placed on resource 
availability which erupts frequent handovers and in turn 
permits numerous blocked/dropped calls (Kamaluddin, Sharif 
and Almaini, 2008). 
 
Many solutions have been proffered regarding bandwidth 
allocation and management in mobile telecommunication 
networks. One of these solutions is by sorting inbound or 
outbound network traffic into classes of applications and 
service types. Traffic is then scheduled accordingly to meet 
with the minimum and maximum bandwidth configuration for 
each traffic type. Intranet or Internet services that share 

information and Web navigation have an increased demand 
on bandwidth, but simply upgrading to wider connections 
may not address bandwidth issues because availability is not 
certain. Hence, in distributed adaptive bandwidth allocation 
and management, admission control schemes are proposed 
to improve end-to-end availability (Qiu, Bahl and Adya, 
2002). As such, using effective bandwidth management for 
the allocation of bandwidth to applications or users during 
peak periods could prevent traffic congestion in the network 
and guarantee minimum bandwidth with prioritized traffic 
based on rules/policies created on the bandwidth interface by 
a control algorithm that regulates the amount of bandwidth 
allocated to each application or users (Kassim and Kassim, 
2011). 
 
This paper therefore investigates the effect of bandwidth on 
network performance. To achieve this goal, we observed the 
throughputs of an operational Code Division Multiple Access 
(CDMA) network and propose a new bandwidth allocation 
scheme using the Shannon-Hartley channel capacity 
theorem. A simulation of the model under various congestion 
settings would certainly assist network operators during 
planning, development and optimization of their networks. 

 
PROBLEM STATEMENT 
Ensuring that each user experiences a satisfactory quality of 
service (QoS) is an important challenge for network 
designers, especially wireless networks – where resources 
are relatively scarce and interference is relatively high. The 
wireless communication networks allow different types of 
services such as voice, data, images and video. These 
services have various requirements in terms of bandwidth, 
cell loss, latency, etc. Ismail (2002) have illustrated four 
bandwidth problems, and have described solutions to these 
problems. His work which motivated this paper aimed at 
providing a practical solution to mitigating the bandwidth 
challenges highlighted as follows: 

(i) Topology design: Ability to dynamically configure 
a network and derive efficient benefits from the 
network resources 

(ii) Flow control and congestion avoidance: 
Bandwidth management protocols are required to 
regulate the acceptance and rejection of newly 
arrived calls 

(iii) Bandwidth allocation: The successful integration 
of link capacities through the different service 
types 

(iv) Assignment of bandwidth to virtual paths: A 
logical link is composed of some virtual circuits 
between any two nodes, and is required to 
optimize performance for all users. 
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The design problem therefore consists of choosing the 
allocated bandwidth and associated parameters required to 
optimize the overall system’s performance, which demand 
satisfying certain operational constraints. The goal therefore 
is to efficiently manage network resources (bandwidth in this 
case) to serve users who generate random demands on the 
network. 
 
RELATED WORKS 
A mobile network supporting multilevel QoS has been 
proposed in (Chou and Shin, 2004). They investigated two 
new user-perceived QoS metrics: degradation ratio and 
upgrade/degrade frequency instead of only focusing on 
bandwidth utilization or blocking/dropping probability. A 
markov model was then used to derive the QoS metric and 
the effects of adaptive bandwidth allocation on user-
perceived QoS. They also proved the existence of tradeoffs 
between system performance and user-perceived QoS and 
how to exploit adaptive bandwidth allocation to increase 
system utilization. 

 
Qiu, Bahl and Adya (2002) considered the evaluation of 
several first-hop allocation schemes, to determine their 
effectiveness. They characterized throughput using traces 
collected from a popular website with the aim of improving 
the end-to-end performance. Results of their analysis 
revealed that different clients experienced widely varied 
throughput, but a significant portion of clients received very 
low throughput (less than 20 kbps). They also appraised 
several bandwidth allocation schemes for various congestion 
scenarios, and remarked that schemes which took into 
account both the application data rate and path bandwidth 
plus full adaptation to the changing path properties, yielded 
better results.  
 
An energy-efficient bandwidth allocation scheme for wireless 
networks have been presented in (Wang, Wang, and 
Nilsson, 2006). They studied the intrinsic relationship 
between energy consumption and transmission rates of 
mobile terminals, where the transmission rate is determined 
through channel allocations, and proposed two schemes for 
congestion admission control, with the intent of minimizing 
energy consumption at each terminal. The performance of 
their system was then evaluated with respect to the rate of 
energy consumed and each successfully transmitted bit, 
throughput and call blocking probability. 
 
Isabona and Ekpenyong (2009) focused on the computation 
and performance measurements of normalized bandwidth for 
single code (SC) and multi code (MC) CDMA systems under 
multi-path propagation. They presented a performance 
analysis for the uplink transmission – a link considered most 
critical in CDMA systems, and remarked that MC 
transmissions with higher spreading gain offered higher 
capacity than SC transmissions, with variable spreading 
gains (depending on the bit rates of the services. The MC 
transmission was also found to improve flexibility for time-
varying traffic in realistic scenarios. 
 
Current trends in telecommunication infrastructure with 
packet oriented networks and huge multimedia traffic have 
raised serious concerns on QoS support. As such, efficient 
dynamic resource management algorithms become vital for 
the optimization of the QoS of networks. The main goal of 
these algorithms is to offer services that satisfy the QoS 
requirements of individual users while guaranteeing 

simultaneously, efficient utilization of the network resource. 
Network bandwidth design, simulation, and management 
tools therefore represent a viable alternative for network 
planners to rapidly determine correct configurations based on 
actual mission requirements and current systems availability. 
The results yield effective utilization of the available 
bandwidth and contribute to determining the prioritization of 
the data rate. Where traffic statistics change significantly, a 
deployment of solutions that can dynamically track traffic 
statistics for efficient allocation of network resources and 
satisfy the QoS requirements of users while maximizing (at 
the same time) resource utilization and network revenue are 
necessary. Dynamic bandwidth allocation has attracted 
numerous research interests and many algorithms have 
been proposed in the literature (see, Campbell and Liao, 
2004; Schulzrinne and Wang, 2005; Ahmed, Boutaba and 
Mehaoua, 2005; Mahajan Parashar and Ramanathan, 2004; 
Kelly, 1997). Many tools and techniques have also been 
developed to predict the performance of cellular networks. 
Broadly speaking, all these tools fall under one of the 
following approaches: discrete event simulation and 
mathematical modeling (Wombell, 1999). In the first 
approach, bandwidth utilization and network performance are 
estimated by modeling every individual packets traversing 
the network. On the other hand, the main idea of 
mathematical modeling lies in building an abstract framework 
of the network consisting of a number of equations founded 
on sound theoretical concepts. This model is then used to 
compute traffic patterns, infer bandwidth utilization trends 
and compute the expected network performance. The 
Network Simulator (NS) (McCanne and Floyd, 2007), and the 
Georgia Tech Network Simulator (Riley, 2003), are network 
simulation tools based on the descrete event approach. 
Network bandwidth utilization is estimated using a simulation 
engine that tracks packet transmissions from origin to 
destination (Breslau, Estrin, Fall, Floyd, Heidemann, Helmy, 
Huang, McCanne, Varadhan, Xu and Yu, 2000). Some tools 
have incorporated additional features to increase the 
accuracy of estimations, such as queing behaviour and 
parallel processing. The Mathematical modeling approach 
includes a significant number of tools such as CACI Network 
Simulation Suite and NetraMet (Brownlee, 1997). These 
tools collect statistical information from the network in order 
to produce an overall picture of the traffic and link utilization 
patterns. This can be achieved by either actively probing the 
network to collect data or by other passive means that rely 
on different networking protocol characteristics to deduce the 
required information. 
 
In this paper, we employed the Shannon-Hartley theorem for 
channel utilization capacity as a basis for investigating the 
network throughput, and tranformed the theorem by 
introducing an additional constraint in order to establish a 
relationship between the data rate and channel capacity. The 
constraint is defined by the model architecture adopted – the 
multi-cell uplink/downlink structure in the presence of 
interference, typical of CDMA cellular networks.  
 
SYSTEM MODEL 
The Shannon-Hartley Theorem 
Suppose a source sends r messages per second and the 
enthropy of a message is E bits per message; then, the 
data/information rate (R) is rE bits per second. One would 
intuitively expect that, for a given communication system, as 
the information rate increases, the number of errors per 
second should also increase. But this is not always the case. 
The Shannon-Hartley theorem gives an upper bound to the 
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capacity of a link in bits per second (bps) as a function of the 
available bandwidth and the signal-to-noise ratio of the link. 
Shannon’s theorem proposed that: 

 A given communication system possesses a 
maximum information rate C, called the channel 
capacity 

 If the data/information rate R is below C, then 
arbitrary negligible error probabilities are 
achievable using intelligent techniques 

 Lower error probabilities are achievable if the 
encoder processes longer signal data blocks, 
which entails longer latency and higher 
computational requirements. 

Thus, if CR  , then, transmissions may be 
accomplished without error in the presence of noise. 
Unfortunately, Shannon’s theorem does not represent a 
constructive proof – it merely states the existence of such a 
coding method. The proof is therefore not reliable if we 
desire a coding method that approaches the channel 
capacity. The negation of this theorem also holds: if R>C, the 
errors are unavaoidable regardless of the coding technique 
used. 
Shannon’s theorem considers a bandlimited Gaussian 
channel operating in the presence of additive Gaussian noise 
(see Fig. 1), and states that the channel capacity of a 
communication network is given by, 

)1(log 2 SNRBC    (1) 
where 

C is the channel capacity in bits per second 
B is the bandwidth of the channel in Hertz 
SNR is the signal-to-noise ratio, expressed in decibels 
(dB) and given by: 

10/
10 10log10 SNRSNR    (2) 

 
 
 
 
 
 
 
 

 
Fig. 1. A channel operating in the presence of additive 

Gaussian noise 
 
Equation (1) is not provable, though. But we can partially 
justify the theorem as follows: 

 Suppose the received signal is accompanied by 
noise with a root mean square (RMS) volatage of 
 , and the quantized signal has levels 
separated by a . If   is sufficiently 
large, then we expect to recognize the signal level 
with an acceptable error probability 

 Furthermore, assuming that each message is to 
be represented by one voltage level, and there 
are M possible messages, then there must be M 
levels. The average signal power becomes: 

2
2

)(
12

1 aMS 
   (3) 

 The number of levels for a given average signal 
power is therefore: 

5.0

2

121 





  SNRM


  (4) 

Now, let us attempt to extend equation (1) and populate it 
with the parameters we are investigating. The SNR can also 
be expressed as: 

12  B
c

SNR    (5) 
where  c  is the modulated signal carrier.  
 
However, the Nyquist sampling theorem (Atkins and Escudie, 
2013) provides that the upper bound signal rate sufficient for 
a given bandwidth B, is 2R. So, 

RB 2     (6) 
A relationship between the data rate and channel capacity 
can also be established by substituting equation (6) into 
equation (1) and considering equation (5): 

))12(log101(log2 102  B
c

RC   (7) 
Thus applying the convention in equation (2), equation (7) 
becomes, 



















10

)12(

2 101log2
B
c

RC    (8) 

Now, channel per unit time is limited to twice the bandwidth 
of the channel symbols, thus: 

Bf p 2     (9) 

where pf , is the pulse frequency. 
To obtain a new expression for R, we transform the 

number of levels M  into: 

V
AM


1    (10) 

where 
A is the transmission signal range 

V  represents the voltage and precision of the 
receiver, i.e.,  

Such that the data rate R, becomes: 
)(log2)(log 22 MBMfR p      (11) 

M can also be expressed in terms of the SNR, as: 

SNRM  1    (12) 
So that, 

)1(log2 2 SNRBR    (13) 
 
SIMULATION SETUP 
Problem Formulation 
This paper investigates the general case of upink/downlink 
transmissions in multi-cell CDMA systems. As shown in Fig. 
2., intended transmissions, either uplink or downlink are 
indicated with thick lines and unintended interferences are 
shown using dotted lines. The SNR for the ith logical link can 
therefore be defined as (Chiang and Bell, 2004): 

 


 N

ij iijj

iii
i

NGP
GPPSNR )(   (14) 

where 
Gij is the path-loss from the transmitter on logical link j 

Ideal bandpass 
filter (BPF) 

Output + 

White Gaussian noise 

Input 
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to the receiver on logical link i, taking into account 
propagation loss and normalization factors  
Gii is the path gain for the intended transmission on 
logical link i, taking into account propagation loss and 
other factors such as spreading gain and the effect of 
beamforming (directional signal transmission or 
reception). 

 
For a large class of modulations, typical of our case, the 
attainable data rate can be rewritten as: 

)1(log1
10 ii KSNR

T
R    (15) 

where  
T is the symbol time 
K is a constant depending on the modulation type and 
desired bit error probability 

 
Due to the high spreading gain, KSIRi is always above unity 
for medium to high SNR environments, thus reducing 
equation (14) to: 

T
KSNR

T
R

iKSNR

ii
10)(log1

10    (16) 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Multi-cell uplink/downlink case with interference 

 
Extending equation (7) over i cells, and substituting equation 
(16), we derive the new channel capacity for interference 
limited CDMA systems as follows: 



















10

)12(

2 101log2
B
c

ii RC  (17) 

We note here that since there exists a direct relationship 
between bandwidth and channel capacity, channel capacity 
and throughput are mostly often equatable (Blahut, 1990). 
Blahut’s (1990) assumption holds for practical 
communication systems, and is adopted in this paper. 
 
Throughput Analysis of The System Under Study 
Data for the study were obtained from base stations (BSs) 
serving the following locations in Nigeria: (Abia and Akwa 
Ibom), (Benue and Anambra), (Bayelsa and Cross River), 
(Delta and Ebonyi), (Enugu and Imo), and (Kogi and Rivers). 
Both uplink and downlink throughput data were collected and 
analysed (see Figs. 3-8). The line plots show the throughputs 
obtained from the various BSs serving the coverage 
zone/area. The figures show throughput instability, and is 
typical of the interference limited nature of third generation 
(3G) systems. We also observed that the uplink 
transmissions had lower throughputs, compared to downlink 
transmissions. The reason behind this is that uplink 
transmissions require lower frequency because of free space 
path-loss, which increases as the frequency increases. As 
mobile phones being battery driven devices have limitations 
in terms of power, we should always seek lower path-losses; 
whereas, BS antennas can transmit the signal (in the 
downlink channels) with comparatively higher powers, to 
compensate for the losses. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

BS1 

BS2 

Wireless 
users 
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(a) Uplink throughput 

 
(b) Downlink throughput 

 
Fig. 3. Throughput recordings at peak period for Abia and Akwa Ibom BSs 

 

 
(a) Uplink throughput 

 
(b) Downlink throughput 

Fig. 4. Throughput recordings at peak period for Benue and Anambra BSs 
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(a) Uplink throughput 

 
(b) Downlink throughput 

 
Fig. 5. Throughput recordings at peak period for Bayelsa and Cross River BSs 

 

 
(a) Uplink throughput 

 
(b) Downlink throughput 

 
Fig. 6. Throughput recordings at peak period for Delta and Ebonyi BSCs 
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(a) Uplink throughput 

 
(b) Downlink throughput 

 
Fig. 7. Throughput recordings at peak period for Enugu and Imo BSs 

 
 

 
(a) Uplink throughput 

 
(b) Downlink throughput 

Fig. 8. Throughput recordings at peak period for Kogi and Rivers BSs 
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A summary of the average throughput range obtained from 
the various base stations are tabulated in Table 1: 
 
Table 1 shows that some locations within the study area did 
not transmit or showed poor transmissions (had zero 

throughput values), both at the uplink and downlink. Our 
findings revealed that the overall average throughputs in the 
uplink and downlink were not impressive (majority were 
below 20 kbps).  

 
Table 1. Summary of the average throughput range for the various base stations within the study area. 

 
Location 

Uplink Downlink 
Min Max Min Max 

Abia and Akwa Ibom 0.80 15.96 0.53 46.50 
Benue and Anambra 4.99 18.82 18.26 49.98 
Bayelsa and Cross River 3.08 16.74 8.39 52.14 
Delta and Ebonyi 0.00 16.41 0.00 44.05 
Enugu and Imo 5.84 20.83 20.21 69.70 
Kogi and Rivers 0.00 16.62 0.00 49.59 
Average throughput 3.68 17.56 11.85 51.99 

 
In judging the sharing of bottlenecks in the system, we 
applied a figure of merit known as the throughput fair index. 
Given a resource allocation schedule, the fairness index is a 
real number that measures how fair or unfair the network 
resource is shared among the competing hosts. We define 
this index in consonance with the Jain’s fairness index (Jain, 
Chiu and Hawe, 1984) as follows: 
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where  
N is the number of cells 
Ti is the throughput of the ith cell 

From the relationship above, it is expected that as FI 
increases, the better fairness the system can gain. 
Considering uplink transmissions, the throughput fairness 
index of the operational network is: 

 

while the throughput fairness index for the downlink 
transmission is: 

%97
42171.9349

1999474



FI  

From these computations, we discovered that there was 
equal sharing of bottlenecks in the system (at both uplink and 
downlink transmissions), but there also exist some unseen 
bottlenecks elsewhere in the system, as evident in the low 
(overall) throughput experienced by the system. A solution to 
this problem is to impose an optimal fairness criteria at each 
node.  
 
 
 

SIMULATION INPUT AND RESULTS 
SIMULATION INPUT 
The simulation inputs for this paper is shown in Table 2. The 
values were empirical evidence obtained from an ideal 
CDMA network. The simulation of the proposed model 
enabled the emulation of the system under study and the 
investigation of why the system still experienced some 
challenges even when there was fair sharing of bottlenecks 
at both transmission phases within the system.. 
 
Table 2. Simulation input parameters and values 

Parameter Value 
Bandwidth (Mbps) 1, 3, 5. 
Modulated signal carrier 4-QAM. 
Signal-to-noise ratio 2 – 20. 
Symbol time 0.05 – 0.5. 

 
RESULTS AND DISCUSSION 
The Shannon-Hartley theorem gives the theoretical tightest 
upper-bound on the data/information rate (excluding error 
correction codes) of clean (or arbitrarily low bit error rate) – 
data that can be transferred with a given average signal 
power, S, through an analog communication channel subject 
to Additive White Gaussian Noise (AWGN) of power, N. The 
above description implies that at higher SNRs, we expect a 
constant rise in capacity as the bandwidth improves, and 
more power is required in the presence of noise to achieve 
the same capacity.  
 
In Fig. 9, the effect of interference on channel capacity, at 
specific bandwidths is studied. We observed that the channel 
capacity increased with incease in SNR, but only limited 
users could access the network (even with improved 
bandwidth); which led to a reduction in the amount of error-
free digital data at specified bandwidth in the presence of 
noise. 

%95
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Fig. 9. Graph of channel capacity vs. SNR – Shannon model 

 
Increasing the signal power involves splitting the signal level 
into multiple levels even while ensuring low probability of 
error. The effect of this is a corresponding rise in capacity. 
However, as observed in Fig. 9, the coverage capacity is a 
logarithmic function of power, and any further increase in 
capacity will certainly diminish the system performance. 
Increasing the bandwidth allocation, therefore has two 
effects: (i) more transmissions per second, and hence, higher 
capacity, (ii) increased noise power at the receiver.  
 
Fig. 10. shows that as the bandwidth allocation increased in 
the presence of interference, the throughput of the system 
degraded instead of improving. This indicates that at higher 
SNRs, there is no gain allocating more bandwidth to the 
network, as increased noise is most likely to influence the 
coverage distance and degrade the system performance. If 
the noise power is maintained at unity, i.e., a case of no 
interference (typical of TDMA and FDMA networks); there is 

hope to obtain the maximum achievable capacity with 
increased bandwidth, thus proving the former effect caused 
by increased bandwidth. A solution to the latter effect is to 
depend on the overall system reliability, by introducing the 
spectral efficiency. This alternative will contribute to boosting 
the communication signal. Mathematically, a plot of spectral 
efficiency vs. energy per bit, Eb/N0) is given as,  











0
2 1log

N
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where r is the spectral efficiency. Equation (19) would split 
the graph area in Fig. 10. into two regions. Reliable 
communication is then possible in the region below the 
curve, and not possible in the region above the curve. Also, 
the closer the performance of the communication system is 
to the curve, the more optimal the system. 

 
Fig. 10. Graph of channel capacity vs. signal-to-noise ratio – Improved model 

 
Transmitted symbols can then be mapped to different 
quantized samples or constellation points due to the additive 
noise of the channel, and this contributes to the achievable 
data rate with oversampling. In this paper, we have 
introduced the Quadrature Amplitude Modulation (QAM) to 
improve the bit transmission rate. Fig. 10. Have illustrated 

the effect of SNR on channel capacity, at specified 
bandwidths, using an average mutual information of 4-QAM 
without a phase shift between the transmitter and the 
receiver.  
Figs. 11 and 12. show the effect of symbol time and data rate 
on the channel capacity. We observed that oversampling 
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does not improve the channel capacity. As the bandwith is 
increased from 1 Mbps to 5 Mbps, the channel capacity 
shrinks, but maintained a near constant trend for bandwidths 
of 3-5 Mbps. These results indicate that in order to benefit 
the network, efforts are required to reverse the decreased 
channel capacity in the presence increased bandwidth. A 
solution to the problem is to control users access to the 
system such that not much interference occurs. But, there 
still exists a small loss for SNR values in the range of 5 dB to 
10 dB (See Fig. 10).  
 
In principle, oversampling reduces the uncertainty of a 
received symbol by providing more quantized samples per 

transmitted symbol. For the Q-AM size simulated in this 
paper (4-QAM), this effect is dominated by an increased 
uncertainty as a result of the higher noise variance when 
compared to the case of symbol-rate sampling. The 
observation is however different when there is a phase offset 
between the transmitter and the receiver. When AWGN 
channel is employed, oversampling yields a signal reception 
with higher resolution than the quantization would originally 
allow, with sampling at symbol rate. Higher order modulation 
schemes with a quantization resolution is therefore 
necessary, and higher QAMs such as 16-QAM, 64-QAM, etc. 
would permit a higher achievable data rate than 4-QAM with 
oversampling. 

 
Fig. 11. Graph of Channel capacity and symbol time – Improved model 

 

 
Fig. 12. Graph of channel capacity and data rate – Improved model 
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In practical systems, we offer the following remarks: If the 
bandwidth of the receiver is below the sampling rate, the additive 
noise of the channel would correlate well, which is expected to 
provide minimal improvements. Therefore, even when practical 
systems possess a higher fair index, impairments such as multi-
path fading could inhibit the performance of a system leading to 
undue congestion. A possible solution would then be to integrate 
a pseudo-noise signal of the required bandwidth before 
quantization. Hence, establishing appropriate pseudo-noise 
signals is a topic for further research. 
 
CONCLUSION 
With the proliferation of mobile communication, allocation of 
resources such as the bandwidth in mobile cellular network has 
become increasingly important. The CDMA cellular technology 
have presented numerous challenges to network operators, and 
deciding the most preferred technique to optimize network 
resources and increase the network performance remains the 
most critical of these challenges. This paper has proposed an 
efficient bandwidth allocation scheme for CDMA networks. The 
Shannon-Hartley Theorem was used as a basis to derive a 
simulation model for a functional network environment. The uplink 
and downlink throughputs of the operational network were also 
investigated. The simulation model, which represents an 
improved form of the Shannon-Hartley model was then 
implemented by extending the test data obtained from the study 
environment while observing the necessary thresholds for ideal 
network environmets.  
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