SPECIAL ALGORITHM FOR THE NUMERICAL SOLUTION OF SYSTEM OF INITIAL VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL EQUATIONS USING BLOCK HYBRID EXTENDED TRAPEZOIDAL RULE OF SECOND KIND

Awari, Y.S¹ and M.G. Kumleng ${ }^{2}$.
${ }^{1}$ Department of Mathematics/Statistics, Bingham University, Karu. Nigeria
2. Department of Mathematics, University of Jos, Jos. Nigeria

Author's Correspondence E-mail: awari04c@yahoo.com.

Abstract

We develop self-starting family of three and five step continuous extended trapezoidal rule of second kind a block hybrid type (BHETR2s) methods through interpolation and collocation procedure. The BHETR 2 methods are then used to produce multiple numerical integrators which are each of the same order and assembled into a single block matrix equation. These equations are simultaneously applied to provide the approximate solution for the ordinary differential equations. The stability properties of the methods were investigated and found to be consistent, zero-stable and hence convergent. The block integrators were tested on three numerical initial value problems of ODEs to show accuracy and efficiency.

Keywords: BhETR 2 s, Zero-Stability, Convergence, General Linear Method, Collocation Method, Trapezoidal Rule, Ordinary Differential Equation

INTRODUCTION

Ordinary differential equations (ODE's) are important tools in solving real world problems and a wide variety of natural phenomena are modeled by these ODE's. Over the years, several researchers have considered the collocation method as a way of generating numerical solutions to ordinary differential equations. The collocation method is dated back as 1956 in the research carried out by Lanczos (1956) and subsequently by Brunner (1996). Lanczos (1956) introduced the standard collocation method with some selected points. However, Fox and Parker (1968) introduced the use of Chebyshev polynomials in collocating the existing method, which was captioned as the LanczosTau method. Ortiz (1969) went on to discuss the general Tau method, which was later extended by Onumanyi and Ortiz (1984) to a method known as the collocation Tau Method. The standard collocation method with method of selected points provides a direct extension of the Tau method to linear ode's with non polynomial coefficients. The collocation Tau method however, uses the Chebyshev perturbation terms to select the collocation points. Tau-method was extensively studied by Onumanyi and Okunuga (1985, 1986), Okunuga and Sofoluwe (1990). Other researchers such as Fatokun (2007), Onumanyi et al (1994), Adeneyi and Alabi (2006), introduced some other variants of the collocation methods which recently led to some continuous collocation approach.
Collocation methods are widely considered as a way of generating numerical solution to ordinary differential equation of the form:
$\frac{d}{d x}(y)=f(x, y), y\left(x_{0}\right)=y_{0}$
This class of problems arises in the study of (1) is used in simulating the growth of populations, simple harmonic motion, trajectory of a particle etc. With the advent of modern high speed electronic digital computers, the numerical integrators have been successfully applied to study problems in mathematics, engineering, computer science and atmospheric sciences, see Jain et al (2007).
Many numerical integration schemes to generate the numerical solution to problem (1) have been proposed by several authors such as Butcher (2003), Awoyemi et al (2007), Jator (2010) and Akinfenwa (2011).

METHODOLOGY: DERIVATION OF THE METHODS

The k-step linear multistep method for the solution of (1) is given in the form
$\sum_{j=0}^{k} \alpha_{j} y_{n+j}=h \sum_{j=0}^{k} \beta_{j} f_{n+j}$
Which has $k+3$ unknowns α_{j} and $\beta_{j}, j=0,1, \ldots k$ therefore can be of order $k+2$. According to Dahlquist (1963), the order of (2) cannot exceed $k+1$ (for k odd) and $k+2$ (for k even) for the method to be stable. Authors such as Gear (1965) and Butcher (1980) have proposed modified forms of (2) which were shown to overcome the Dahlquist barrier theorem. These methods known as hybrid methods were obtained by incorporating off-step points in the derivation process.
We developed a k-step continuous hybrid formula which is an extension of (2) and involves $k(x, y)$ evaluated at off-grid points (

$$
\left.x_{n+v}, y_{n+v}\right), 0<q<k, q \notin\{0,1, \ldots, k\} \text { in the form: }
$$

$$
\begin{equation*}
\sum_{j=0}^{k} \alpha_{j} y_{n+j}=h \sum_{j=0}^{k} \beta_{j} f_{n+j}+h \beta_{q} f_{n+q} \tag{3}
\end{equation*}
$$

where $\alpha_{k}=1, \alpha_{0}$ and β_{0} not both zero, $y_{n+j}=y(x+j h)$ and $f_{n+v}=f\left(x_{n+v}, y_{n+v}\right)$, Lambert (1973, 1991). A method such as (3) preserves the traditional advantage of one step methods of being self-starting and permitting easy change of step length, Lambert (1973). Their advantage over R-K methods lies in the fact that they are
less expensive in terms of the number of function evaluation for a given order. The methods also generate simultaneous solutions at all grid points.
The general k-step continuous extended trapezoidal rule of second kind, a hybrid type (CHETR 2 s) with one off-grid collocation point is given by:
$y(x)=\sum_{j=0}^{k-1} \alpha_{j}(x) y_{n+j}+h \sum_{j=v-1}^{v} \beta_{j}(x) f_{n+j}+h \beta_{q}(x) f_{n+q}$
where $\alpha_{j}(x), \beta_{j}(x)$ and $\beta_{v}(x)$ are the continuous coefficients of the method, q is a chosen midpoint of the subinterval $\left[x_{n+k-1}, x_{n+k}\right]$, Gear (1965).

From equation (4), we obtained the D and C matrix as:
$D=\left[\begin{array}{ccccccc}1 & x_{n} & x_{n}^{2} & . & . & . & x_{n}^{k+2} \\ 1 & x_{n+1} & x_{n+1}^{2} & . & . & . & x_{n+1}^{k+2} \\ 1 & x_{n+2} & x_{n+2}^{2} & . & . & . & x_{n+2}^{k+2} \\ . & . & \cdot & . & . & . & . \\ . & . & . & . & . & . & . \\ . & . & . & . & . & . & . \\ 1 & x_{n+k-1} & x_{n+k-1}^{2} & . & . & . & x_{n+k-1}^{k+2} \\ 0 & 1 & 2 x_{n+v-1} & . & . & . & (k+2) x_{n+v-1}^{k+1} \\ 0 & 1 & 2 x_{n+v} & . & . & . & (k+2) x_{n+v}^{k+1} \\ 0 & 1 & 2 x_{n+q} & . & . & . & (k+2) x_{n+q}^{k+1}\end{array}\right]$
and

(6)

Equations (4), (5) and (6) are therefore used to derived the continuous formulation of the hybrid ETR2S with one off-grid collocation point for step numbers $k=3$ and 5 .
2.1: Consider $k=3, \quad q=\frac{5}{2}$, equation (4) becomes:
$y(x)=\sum_{j=0}^{2} \alpha_{j}(x) y_{n+j}+h \sum_{j=1}^{2} \beta_{j}(x) f_{n+j}+h \beta_{\frac{5}{2}}(x) f_{n+\frac{5}{2}}$
From (7), we obtained (5) and (6) as:

$$
D=\left[\begin{array}{cccccc}
1 & x_{n} & x_{n}^{2} & x_{n}^{3} & x_{n}^{4} & x_{n}^{5} \tag{8}\\
1 & x_{n+1} & x_{n+1}^{2} & x_{n+1}^{3} & x_{n+1}^{4} & x_{n+1}^{5} \\
1 & x_{n+2} & x_{n+2}^{2} & x_{n+2}^{3} & x_{n+2}^{4} & x_{n+2}^{5} \\
0 & 1 & 2 x_{n+1}^{5} & 3 x_{n+1}^{2} & 4 x_{n+1}^{3} & 5 x_{n+1}^{4} \\
0 & 1 & 2 x_{n+\frac{5}{2}} & 3 x^{2} & x_{n+\frac{5}{2}}^{5} & 4 x_{n+\frac{5}{2}}^{3} \\
5 x_{n+\frac{5}{2}}^{4} & x_{n+2}^{3} \\
0 & 1 & 2 x_{n+2} & 3 x_{n+2}^{2} & 4 x_{n+2}^{3} & 5 x_{n+2}^{4}
\end{array}\right]
$$

and

$$
C=\left[\begin{array}{llllll}
\alpha_{0,1} & \alpha_{1,1} & \alpha_{2,1} & h \beta_{1,1} & h \beta_{u, 1} & h \beta_{2,1} \tag{9}\\
\alpha_{0,2} & \alpha_{1,2} & \alpha_{2,2} & h \beta_{1,2} & h \beta_{u, 2} & h \beta_{2,2} \\
\alpha_{0,3} & \alpha_{1,3} & \alpha_{2,3} & h \beta_{1,3} & h \beta_{u, 3} & h \beta_{2,3} \\
\alpha_{0,4} & \alpha_{1,4} & \alpha_{2,4} & h \beta_{1,4} & h \beta_{u, 4} & h \beta_{2,4} \\
\alpha_{0,5} & \alpha_{1,5} & \alpha_{2,5} & h \beta_{1,5} & h \beta_{u, 5} & h \beta_{2,5} \\
\alpha_{0,6} & \alpha_{1,6} & \alpha_{2,6} & h \beta_{1,6} & h \beta_{u, 6} & h \beta_{2,6}
\end{array}\right]
$$

After some computations, the values of $\alpha_{0}(x), \alpha_{1}(x)$,
$\alpha_{2}(x), \beta_{1}(x), \frac{\beta}{\frac{5}{2}}^{(x)}$ and $\beta_{2}(x)$ are obtained from (8) and (9) and substituted into equation (7) to give us the desired continuous formulation for the three step block hybrid ETR2s in the form:

$$
\begin{align*}
y\left(x_{n}\right. & +\xi):=\left(-\frac{145}{43} \frac{\xi}{h}+\frac{751}{172} \frac{\xi^{2}}{h^{2}}-\frac{233}{86} \frac{\xi^{3}}{h^{3}}\right. \\
& \left.+\frac{139}{172} \frac{\xi^{4}}{h^{4}}+1-\frac{4}{43} \frac{\xi^{5}}{h^{5}}\right) y_{n}+(\\
& -\frac{692}{43} \frac{\xi^{3}}{h^{3}}+\frac{652}{43} \frac{\xi^{2}}{h^{2}}-\frac{160}{43} \frac{\xi}{h}-\frac{40}{43} \frac{\xi^{5}}{h^{5}} \\
& \left.+\frac{283}{43} \frac{\xi^{4}}{h^{4}}\right) y_{n+1}+\left(\frac{1617}{86} \frac{\xi^{3}}{h^{3}}+\frac{305}{43} \frac{\xi}{h}\right. \\
& \left.+\frac{44}{43} \frac{\xi^{5}}{h^{5}}-\frac{3359}{172} \frac{\xi^{2}}{h^{2}}-\frac{1271}{172} \frac{\xi^{4}}{h^{4}}\right) y_{n}+2 \\
& +\left(\frac{195}{43} \frac{\xi^{4}}{h^{3}}+\frac{648}{43} \frac{\xi^{2}}{h}-\frac{1633}{129} \frac{\xi^{3}}{h^{2}}\right. \\
& \left.-\frac{820}{129} \xi-\frac{76}{129} \frac{\xi^{5}}{h^{4}}\right) f_{n}+1+\left(-\frac{64}{43} \frac{\xi^{2}}{h}\right. \\
& -\frac{32}{43} \frac{\xi^{4}}{h^{3}}+\frac{16}{129} \frac{\xi^{5}}{h^{4}}+\frac{64}{129} \xi \\
& \left.+\frac{208}{129} \frac{\xi^{3}}{h^{2}}\right) f_{n+\frac{5}{2}}+\left(\frac{887}{86} \frac{\xi^{2}}{h}+\frac{379}{86} \frac{\xi^{4}}{h^{3}}\right. \\
& \left.-\frac{28}{43} \frac{\xi^{5}}{h^{4}}-\frac{155}{43} \xi-\frac{450}{43} \frac{\xi^{3}}{h^{2}}\right) f_{n+2} \tag{10}
\end{align*}
$$

Equation (10) is evaluated at some ξ points to obtained discrete equations which we called (11). These equations are combined to form a block, which are implemented to give simultaneously approximate solutions to problem (1).

$$
\begin{aligned}
& \frac{1}{4}\left(43 y_{n+3}-141 y_{n+2}+93 y_{n+1}+5 y_{n}\right) \\
& \quad=\frac{\mathrm{h}}{2}\left[32 f_{n+\frac{5}{2}}-39 f_{n+2}-23 f_{n+1}\right]
\end{aligned}
$$

$$
\begin{align*}
& \frac{1}{60}\left(2752 y_{n+\frac{5}{2}}-2025 y_{n+2}-700 y_{n+1}-27 y_{n}\right)= \\
& \frac{\mathrm{h}}{2}\left[16 f_{n+\frac{5}{2}}+45 f_{n+2}+10 f_{n+1}\right] \\
& \frac{1}{2}\left(1797 y_{n+2}-1704 y_{n+1}-93 y_{n}\right)=\frac{\mathrm{h}}{2}\left[129 f_{n+3}-\right. \\
& \left.640 f_{n+\frac{5}{2}}+1554 f_{n+2}+847 f_{n+1}\right] \\
& \frac{1}{2}\left(-915 y_{n+2}+480 y_{n+1}+435 y_{n}\right)=\frac{\mathrm{h}}{2}\left[64 f_{n+\frac{5}{2}}-\right. \\
& \left.465 f_{n+2}-820 f_{n+1}-129 f_{n}\right] \tag{11}
\end{align*}
$$

2.2: For $k=5$, taking $q=\frac{9}{2}$, we generate (4) in the form:
$y(x)=\sum_{j=0}^{4} \alpha_{j}(x) y_{n+j}+h \sum_{j=1}^{3} \beta_{j}(x) f_{n+j}+h \beta_{\frac{9}{2}}(x) f_{n+\frac{9}{2}}$
In this case, our D and C matrix becomes:
$D=\left[\begin{array}{cccccccc}1 & x_{n} & x_{n}^{2} & x_{n}^{3} & x_{n}^{4} & x_{n}^{5} & x_{n}^{6} & x_{n}^{7} \\ 1 & x_{n+1} & x_{n+1}^{2} & x_{n+1}^{3} & x_{n+1}^{4} & x_{n+1}^{5} & x_{n+1}^{6} & x_{n+1}^{7} \\ 1 & x_{n+2} & x_{n+2}^{2} & x_{n+2}^{3} & x_{n+2}^{4} & x_{n+2}^{5} & x_{n+2}^{6} & x_{n+2}^{7} \\ 1 & x_{n+3} & x_{n+3}^{2} & x_{n+3}^{3} & x_{n+3}^{4} & x_{n+3}^{5} & x_{n+3}^{6} & x_{n+3}^{7} \\ 1 & x_{n+4}^{7} & x_{n+4}^{2} & x_{n+4}^{3} & x_{n+4}^{4} & x_{n+4}^{5} & x_{n+4}^{6} & x_{n+4}^{7} \\ 0 & 1 & 2 x_{n+2} & 3 x_{n+2}^{2} & 4 x_{n+2}^{3} & 5 x_{n+2}^{4} & 6 x_{n+2}^{5} & 7 x_{n+2}^{6} \\ 0 & 1 & 2 x_{n+\frac{9}{2}}^{3} & 3 x_{n+\frac{9}{2}}^{2} & 4 x_{n+\frac{9}{2}}^{3} & 5 x_{n+\frac{9}{2}}^{4} & 6 x_{n+\frac{9}{2}}^{5} & 7 x_{n+\frac{9}{2}}^{6} \\ 0 & 1 & 2 x_{n+3} & 3 x_{n+3}^{2} & 4 x_{n+3}^{3} & 5 x_{n+3}^{4} & 6 x_{n+3}^{5} & 7 x_{n+3}^{6}\end{array}\right]$
and
$C=\left[\begin{array}{llllllll}\alpha_{0,1} & \alpha_{1,1} & \alpha_{2,1} & \alpha_{3,1} & \alpha_{4,1} & h \beta_{2,1} & h \beta_{u, 1} & h \beta_{3,1} \\ \alpha_{0,2} & \alpha_{1,2} & \alpha_{2,2} & \alpha_{3,2} & \alpha_{4,2} & h \beta_{2,2} & h \beta_{u, 2} & h \beta_{3,2} \\ \alpha_{0,3} & \alpha_{1,3} & \alpha_{2,3} & \alpha_{3,3} & \alpha_{4,3} & h \beta_{2,3} & h \beta_{u, 3} & h \beta_{3,3} \\ \alpha_{0,4} & \alpha_{1,4} & \alpha_{2,4} & \alpha_{3,4} & \alpha_{4,4} & h \beta_{2,4} & h \beta_{u, 4} & h \beta_{3,4} \\ \alpha_{0,5} & \alpha_{1,5} & \alpha_{2,5} & \alpha_{3,5} & \alpha_{4,5} & h \beta_{2,5} & h \beta_{u, 5} & h \beta_{3,5} \\ \alpha_{0,6} & \alpha_{1,6} & \alpha_{2,6} & \alpha_{3,6} & \alpha_{4,6} & h \beta_{2,6} & h \beta_{u, 6} & h \beta_{3,6} \\ \alpha_{0,7} & \alpha_{1,7} & \alpha_{2,7} & \alpha_{3,7} & \alpha_{4,7} & h \beta_{2,7} & h \beta_{u, 7} & h \beta_{3,7} \\ \alpha_{0,8} & \alpha_{1,8} & \alpha_{2,8} & \alpha_{3,8} & \alpha_{4,8} & h \beta_{2,8} & h \beta_{u, 8} & h \beta_{3,8}\end{array}\right]$
The unknown coefficients of the method (12) are obtained after solving D and C matrix where $C=D^{-1}$, then substituted back into (12) to yield the CHETR 2 s for the five step block hybrid ETR 2 S in the form:

$$
\begin{aligned}
& \frac{1}{24}\left(2193 y_{n+5}+4545 y_{n+4}+16640 y_{n+3}-\right. \\
& 21120 y_{n+2}-2385 y_{n+1}+127 y_{n}=\frac{\mathrm{h}}{2}\left[256 f_{n+9 / 2}+\right. \\
& \left.1555 f_{n+3}-\quad 1059 f_{n+2}\right]
\end{aligned}
$$

$$
\begin{align*}
& \frac{1}{2520}\left(748544 y_{n+9 / 2}-1488375 y_{n+4}-661500 y_{n+3}+\right. \\
& \left.1285956 y_{n+2}+121500 y_{n+1}-6125 y_{n}\right)= \\
& \frac{\mathrm{h}}{2}\left[128 f_{n+9 / 2}-1050 f_{n+3}-567 f_{n+2}\right] \\
& \frac{1}{24}\left(-166095 y_{n+4}-376540 y_{n+3}+490320 y_{n+2}+\right. \\
& \left.55260 y_{n+1}-2945 y_{n}\right)=\frac{\mathrm{h}}{2}\left[645 f_{n+5}-2816 f_{n+9 / 2}-\right. \\
& \left.36455 f_{n+3}-24549 f_{n+2}\right] \\
& \frac{1}{24}\left(-321735 y_{n+4}-108880 y_{n+3}+397980 y_{n+2}+\right. \\
& \left.34320 y_{n+1}-1685 y_{n}\right)=\frac{\mathrm{h}}{2}\left[1024 f_{n+9 / 2}-\right. \\
& \left.10965 f_{n+4}-37640 f_{n+3}-17694 f_{n+2}\right] \\
& \frac{1}{24}\left(48405 y_{n+4}+499100 y_{n+3}-196560 y_{n+2}-\right. \\
& \left.342300 y_{n+1}-8645 y_{n}\right)=\frac{\mathrm{h}}{2}\left[256 f_{n+9 / 2}+23485 f_{n+3}+\right. \\
& \left.44919 f_{n+2}+10965 f_{n+1}\right] \\
& \frac{1}{8}\left(60885 y_{n+4}+509520 y_{n+3}-393660 y_{n+2}-\right. \\
& \left.222480 y_{n+1}+45735 y_{n}\right)=\frac{\mathrm{h}}{2}\left[1024 f_{n+9}+79320 f_{n+3}+\right. \\
& \left.113886 f_{n+2}-3655 f_{n+1}\right] \tag{16}
\end{align*}
$$

Stability Analysis

In this paper, we shall discuss the following terminology; order and error constant, consistency and zero-stability of linear multistep methods.

3.1: Order and error constant

Following Fatunla (1991) and Lambert (1973), the local truncation error associated with equation (3) is the linear difference operator \mathcal{L} as

$$
\begin{equation*}
\mathcal{L}\{y(x), h\}=\sum_{j=0}^{k}\left\{\alpha_{j} y\left(x_{n+j}\right)-h \beta_{j} y\left(x_{n+j}\right)\right\} \tag{17}
\end{equation*}
$$

The Taylor series expansion of (17) about the point x_{n} yield

$$
\begin{align*}
& \mathcal{L}\{y(x), h\} \\
& =c_{0} y\left(x_{n}\right)+c_{1} h y^{\prime}\left(x_{n}\right)+\ldots+c_{q} h^{q} y^{(q)}\left(x_{n}\right)+\ldots \tag{18}
\end{align*}
$$

where,

$$
\begin{align*}
& c_{0}=\sum_{j=0}^{k} \alpha_{j} \tag{19}\\
& c_{1}=\sum_{j=0}^{k} j \alpha_{j} \tag{20}
\end{align*}
$$

$c_{q}=\frac{1}{q!} \sum_{j=0}^{k} j \alpha_{j}-\frac{1}{(q-1)!} \sum_{j=0}^{k} j^{(q-1)} \alpha_{j}$
where,
c_{q} are the constant coefficients

According to Henrici (1962), the method (3) has order p if $c_{0}=c_{1}=\ldots=c_{p}=0$ and $c_{p+1} \neq 0$, where c_{p+1} is called the error constant.

3.2: Consistency

A Linear multistep method (3) is consistent if it has order greater or equal to one (that is $p \geq 1$) that is, if

$$
\begin{array}{ll}
\text { (i) } & \rho(1)=0 \\
\text { (ii) } & \rho^{\prime}(1)=\sigma(1)
\end{array}
$$

where, ρ and σ are the first and second characteristic polynomials of the method.

3.3: Zero-Stability

A Linear multistep method (3) is said to be zero stable if no roots of the first characteristic polynomial $\rho(\xi)$ has modulus greater than one and every root with modulus one is distinct, Lambert (1973, 1991).

3.4: General Linear Method (GLM)

The GLM were introduced by Burrage and Butcher (1980) and Shirley (2005) on the implementation of LMM for the numerical solution of equation (1).
The GLM for the solution of problem (1) can be expressed in the form

$$
Y_{i}^{[n+1]}=h \sum_{j=1}^{s} a_{i j} f\left(x_{n}+c_{j} h, Y_{j}^{[n+1]}\right)+\sum_{j=1}^{r} u_{i j} y_{j}^{[n]}, i=1, \ldots, s
$$

$$
Y_{i}^{[n+1]}=h \sum_{j=1}^{s} b_{i j} f\left(x_{n}+c_{i} h, Y_{j}^{[n+1]}\right)+\sum_{j=1}^{r} v_{i j} y_{j}^{[n]}, i=1, \ldots, r
$$

$$
n>0, n=0,1, \ldots, N, h=\left(x_{n+i}-x_{n}\right) / N \quad \text { and }
$$

$x_{n}=x_{0}+n h$ and $i=1,2, \ldots, s$ are stage values which are internal to each step and represent approximations to the solution at the point $x_{n}+c_{i} h$, the vector of external values $y^{[n]}=\left[y_{1}^{[n]}, y_{2}^{[n]}, \ldots, y_{r}^{[n]}\right]^{T}$ denotes information available at the end of the $n^{\text {th }}$-step for the input to the next step. Again we emphasize that r denotes quantities as output from each step and input to the next step and S denotes step values used in the computation.
These methods are characterized by four matrices A, U, B and V which make up a partition $(s+r) \times(s+r)$ matrix M in the form:
$M=\left[\begin{array}{ccc}A & \cdot & U \\ \cdot & \cdot & \cdot \\ B & \cdot & V\end{array}\right]$
and the general linear method takes the form

$$
\left[\begin{array}{c}
Y^{[n]} \tag{25}\\
\cdots \\
y^{[n]}
\end{array}\right]=M\left[\begin{array}{c}
h f\left(Y^{[n]}\right) \\
\cdots \\
y^{[n-1]}
\end{array}\right]
$$

where,

$$
\begin{align*}
& Y^{[n]}=\left[\begin{array}{c}
Y_{1}^{[n]} \\
Y_{2}^{[n]} \\
\cdot \\
\cdot \\
\cdot \\
Y_{s}^{[n]}
\end{array}\right], f\left(Y^{[n]}\right)=\left[\begin{array}{c}
f\left(Y_{1}^{[n]}\right) \\
f\left(Y_{2}^{[n]}\right) \\
\cdot \\
\cdot \\
\cdot \\
f\left(Y_{s}^{[n]}\right)
\end{array}\right], \\
& y^{[n-1]}=\left[\begin{array}{c}
y_{1}^{[n-1]} \\
y_{2}^{[n-1]} \\
\cdot \\
\cdot \\
\cdot \\
y_{r}^{[n-1]}
\end{array}\right] \quad \text { and } \quad y^{[n]}=\left[\begin{array}{c}
{[n]} \\
\cdot \\
\cdot \\
\cdot \\
y_{r}^{[n]}
\end{array}\right] \tag{22}
\end{align*}
$$

Butcher (2003).

Definition 2:

A General Linear Method is A-stable if for all $z \in C^{-1}, I-z A$ is non-singular and $M(z)$ is a stability matrix, Butcher (2003).
Note:
i. For an A-stable method, there is no restriction on the choice of the step size.
ii. A-stability helps us to determine the type of problems our methods can handle.

Analysis of our Newly Derived Methods

4.1: Three Step Block Hybrid ETR 2 S (BHETR 2 s 1)
4.1.1 Order, Consistency and Convergence (BHETR2s 1)

Applying (17) to (21), we obtained the order and error constant of our method (11) as $p=5$ and $c_{6}=\left(\frac{7}{5!},-\frac{1}{(2!)^{6}},-\frac{269}{5!},-\frac{23}{4!}\right)^{T}$ respectively. Since
has order $p=5 \geq 1$, it is consistent. See (3.1)

4.1.2 Zero-Stability (BHETR2s 1)

The block method (11) can be expressed in the form

Hence the characteristic polynomial of the block method (11) is given by
$\rho(\lambda)=\operatorname{det}\left(\lambda A^{(0)}-A^{(1)}\right)$
$\rho(\lambda)=\operatorname{det}\left(\lambda\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)-\left(\begin{array}{llll}0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1\end{array}\right)\right)$
$\rho(\lambda)=\lambda^{3}(\lambda-1)=0 \Rightarrow \lambda_{1}=1, \lambda_{2}=\lambda_{3}=\lambda_{4}=0$
From (3.3), the method is zero-stable.
4.1.3 GLM for BHETR2s 1

We converted the three step block hybrid ETR2S (11) into GLM (24) as

$$
\left[\begin{array}{ccccc|ccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \tag{29}\\
-\frac{129}{480} & -\frac{820}{480} & -\frac{465}{480} & \frac{64}{480} & 0 & \frac{915}{480} & 0 & -\frac{435}{480} \\
0 & \frac{847}{1797} & \frac{1554}{1797} & -\frac{640}{1797} & \frac{129}{1797} & 0 & \frac{1704}{1797} & \frac{93}{1797} \\
0 & \frac{300}{2752} & \frac{1350}{2752} & \frac{480}{2752} & 0 & \frac{2025}{2752} & \frac{175}{2752} & \frac{27}{2752} \\
0 & -\frac{46}{43} & -\frac{78}{43} & \frac{64}{43} & 0 & \frac{141}{43} & -\frac{93}{43} & -\frac{5}{43} \\
\hline 0 & -\frac{46}{43} & -\frac{78}{43} & \frac{64}{43} & 0 & \frac{141}{43} & -\frac{93}{43} & -\frac{5}{43} \\
0 & \frac{847}{1797} & \frac{1554}{1797} & -\frac{640}{1797} & \frac{129}{1797} & 0 & \frac{1704}{1797} & \frac{93}{1797} \\
-\frac{129}{480} & -\frac{820}{480} & -\frac{465}{480} & \frac{64}{480} & 0 & \frac{915}{480} & 0 & -\frac{435}{480}
\end{array}\right]
$$

We plotted the absolute stability region of (29) as

Fig. 1: Absolute stability region for BHETR2s 1 method
4.2: Five Step Block Hybrid ETR ${ }_{2}$ (BHETR 2 2)
4.2.1 Order, Consistency and Convergence (BHETR 2 s 2)

We obtained the order and error constant of THBH 2 (16) using (17) to
(21) \quad as $p=7$
and
$c_{8}=\left(\frac{13}{7 .(2!)^{2}},-\frac{45}{(2!)^{8}},-\frac{1217}{7 \cdot(2!)^{4}},-\frac{523}{7 \cdot(2!)^{4}},-\frac{97}{(2!)^{4}},-\frac{3447}{7 \cdot(2!)^{4}}\right)^{T}$
respectively. Since (16) has order $p=7 \geq 1$, it is consistent. See (3.1)

4.2.2 Zero-Stability (BHETR2s 2)

$$
\left(\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
y_{n+1} \\
y_{n+2} \\
y_{n+3} \\
y_{n+4} \\
y_{n-\frac{9}{2}} \\
y_{n+5}
\end{array}\right)=\left(\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
y_{n-\frac{9}{2}} \\
y_{n-4} \\
y_{n-3} \\
y_{n-2} \\
y_{n-1} \\
y_{n}
\end{array}\right)
$$

From (29), the first characteristic polynomial $\rho(\lambda)$ of THBH 2
(16) is in the form $\rho(\lambda)=\operatorname{det}\left(\lambda A^{(0)}-A^{(1)}\right)=\lambda^{5}(\lambda-1)=0$, which implies that $\lambda_{1}=1$ and $\lambda_{2}=\lambda_{3}=\lambda_{4}=\lambda_{5}=\lambda_{6}=0$.
Hence, it is zero stable. We have therefore shown the convergence of the method.

4.2.3: \quad GLM for BHETR 2 s 2

Equation (16) is converted into GLM (24) as

0	0	0	0	0	0	0	0	0	0	0	1	
14620	0	455544	317280	0	4096	0	60885	509520	393660	0	45735	
$\overline{222480}$	-	222480	222480		222480	-	222480	$\overline{222480}$	222480		222480	
0	131580	- 539028	281820	0	$-\frac{3072}{196560}$	0	$\frac{48405}{196560}$	$\frac{499100}{196560}$	0	342300	-8645	
	196560	196560	196560							196560	19656	
0	0	$\underline{212328}$	451680	131580	12288	0	321735	0	397980	34320	1685	
		108880	108880	108880	108880		108880		108880	108880	10888 C	
0	0	$\underline{294588}$	437460	0	$\frac{33792}{166095}$	$-\frac{7740}{166095}$	0	$-\frac{376540}{166095}$	$\frac{490320}{166095}$	$\frac{55260}{166095}$	$\underline{2945}$	
		166095	166095								16609:	
0	0	714420	1323000	0	161280	0	$\frac{1488375}{748544}$	661500	1285156	-121500	6125	
		748544	748544		748544			748544	748544	7485	74854	
0	0	4236	6220		1024	0	$\frac{1515}{731}$	$-\frac{16640}{2193}$	$\frac{7040}{731}$	$\frac{795}{731}$	$-\frac{127}{2193}$	
		731	731		731							
0	0	4236	6220		$\underline{1024}$	0	$-\frac{1515}{731}$	$-\frac{16640}{2193}$	$\frac{7040}{731}$	$\frac{795}{731}$	$-\frac{127}{2193}$	
		731	731		731							
0	0	294588	437460		$\frac{33792}{166095}$	$\frac{7740}{166095}$	0	$\frac{376540}{166095}$	$\frac{490320}{166095}$	$\frac{55260}{166095}$	$-\frac{2945}{16609}$	
		166095	166095									
0	0	$\underline{212328}$	451680	131580	12288	0	321735	0	$\frac{397980}{108880}$	$\frac{34320}{108880}$	$\frac{1685}{10888}$	
		108880	108880	108880	108880		108880					
0	131580	539028	281820	0	3072	0	48405	$\underline{499100}$	0	$-\frac{342300}{196560}-\frac{8645}{19656}$		
0	196560	196560	196560		196560		196560	196560				
14620	0	455544	317280	0	4096	0	60885	509520	393660	0	45735	
$\overline{222480}$		222480	222480		222480		222480	$\overline{222480}$	222480		222480	

Fig. 2: Absolute stability region for BHETR $_{2}$ S 2 method

Numerical Example

In this paper, we constructed block hybrid extended trapezoidal rule of second kind (BHETR 2 S 1 and BHETR 2 2 2). Both methods are applied on three numerical problems of ordinary differential equations occurring in real life. For the sake of reporting, the hybrid block methods for step numbers $k=3$ and 5 were presented. We present the performance of the newly derived block methods using the well-known MatLab ode solver, Ode23s. For the avoidance of doubt, our method(s) tends to perform very well on the MatLab Ode solver, (see Fig.3-8).

Problem 1: System of Ordinary Differential Equations in 8 dimensions
$y_{1}^{\prime}(x)=-1.71 y_{1}(x)+0.43 y_{2}(x)+8.32 y_{3}(x)+$
$0.00007 y_{4}(x)$
$y_{2}^{\prime}(x)=1.71 y_{1}(x)-8.75 y_{2}(x)$
$y_{3}^{\prime}(x)=-10.03 y_{3}(x)+0.43 y_{4}(x)+0.035 y_{5}(x)$
$y_{4}^{\prime}(x)=8.32 y_{2}(x)+0.171 y_{3}(x)-1.12 y_{4}(x)$
$y_{5}^{\prime}(x)=-1.145 y_{5}(x)+0.43 y_{6}(x)+0.43 y_{7}(x)$
$y_{6}^{\prime}(x)=-280 y_{6}(x) y_{8}(x)+0.69 y_{4}(x)+1.71 y_{5}(x)-$
$0.43 y_{6}(x)+0.69 y_{7}(x)$
$y_{7}^{\prime}(x)=280 y_{6}(x) y_{8}(x)-1.81 y_{7}(x)$
$y_{8}^{\prime}(x)=-280 y_{6}(x) y_{8}(x)+1.81 y_{7}(x)$
with initial condition given by $y_{1}(0)=1, y_{2}(0)=$
$0, y_{3}(0)=0, y_{4}(0)=0, y_{5}(0)=0, y_{6}(0)=0$,
$y_{7}(0)=0, y_{8}(0)=0.0057,0 \leq x \leq 10, h=0.01$
Problem 2: Oregenator Chemical Reaction Equation
The Oregenator is expressed mathematically by the following ivp
$y_{1}^{\prime}=77.27\left(y_{2}+y_{1}\left(1-8.375 \times 10^{-6} y_{1}-y_{2}\right)\right), y_{1}(0)=1$
$y_{2}^{\prime}=\frac{1}{77.27}\left(y_{3}-\left(\left(1+y_{1}\right) y_{2}\right), \quad y_{2}(0)=0\right.$
$y_{3}^{\prime}=0.16\left(y_{1}-y_{3}\right)$,
$y_{3}(0)=-1$
$0 \leq x \leq 700, h=0.01$
[NB: A famous chemical reaction is the Oregenator reaction between $\mathrm{Br} \mathrm{HBrO}_{2}, \mathrm{Br}^{-}$and $\mathrm{Ce}(I V)$ described by Field and Noyes in 1984].

Problem 3: Stiff System of Ordinary Differential Equations Consider the linear stiff system of ordinary differential equations on the range $0 \leq x \leq 10$.

$$
\begin{gathered}
y_{1}^{\prime}=-10 y_{1}+50 y_{2} \\
y_{2}^{\prime}=-50 y_{1}-10 y_{2} \\
y_{3}^{\prime}=-40 y_{3}-200 y_{4} \\
y_{4}^{\prime}= \\
y_{5}^{\prime}=-200 y_{3}-40 y_{4} \\
y_{6}^{\prime}= \\
=-2 y_{5}-2 y_{5}-0.2 y_{6} \\
y_{1}(0)=0, y_{2}(0)=1, y_{3}(0)=0, y_{4}(0)=1, y_{5}(0) \\
\quad=0, y_{6}(0)=1, h=0.01
\end{gathered}
$$

Fig.3: solution curve for problem 1 using BHETR2s 1

Fig 4: solution curve for problem 1 using BHETR2s 2.

Fig. 5: solution curve for problem 2 using BHETR ${ }_{2} 1$.

Fig. 6: solution curve for problem 2 using BHETR ${ }_{2}$ s 2.

Fig. 7: solution curve for problem 3 using $\mathrm{BHETR}_{2} \mathrm{~S} 1$.

Fig. 8: solution curve for problem 3 using BHETR_{2} s 2.

Conclusion

Our new method(s) competes quite well especially when compared with the Ode Solver. The solution curves show the performance block hybrid methods for step numbers $k=$ 3 and 5 was quite remarkable especially when compared with the well known ode 23 s and ode 45 . The block hybrid methods were shown to be consistent, zero-stable and hence convergent (see table). Moreover, they were also shown to have order $p=$ $k+2$. Fig.2-8 reveal that our block hybrid methods are A-stable since their region(s) of absolute stability contain the whole of the left hand complex half plane and as such are suitable for the solution of stiff problems.

REFERENCES

Adeniyi, R.B and Alabi, M.O, Derivation of continuous multistep methods using chebyshev polynomials basis functions. Abacus, 33: 351-361
Akinfenwa, O.A., Jator, S.N., Yao,N.M (2011).A linear multistep hybrid methods with continuous coefficient for solving stiff ordinary differential equation.Journal of Modern Mathematics and Statistics 5(2):47-53,2011.
Awoyemi, D.O., Ademiluyi, R.A and Amusegham, E. (2007). Offgrids exploitation in the development of more accurate method for the solution of ODEs, Journal of mathematical
physics, 12 (2007), 117-124
Brugnano, L. and Trigiante, D., Solving Differential Problems by Multistep Initial and Boundary Value Methods, Gordon and Breach Science Publishers, Amsterdam, (1998)
Brunner, H., The collocation methods for ODEs: An introduction. Cambridge University Press.
Butcher, J.C. and Burrage, K. (1980). Non-Linear Stability of a General Class of Differential Equation Methods.BIT, 20: 185-203
Butcher, J.C, Numerical Methods for Ordinary differential systems, John Wiley \& sons,west Sussex,England (2003)
Dahlquist, G, A special stability problem for linear multistep methods, BIT,(1963), 3 pp.27-43
Fatokun, J.O. (2007), Continuous approach for deriving self starting Multistep Methods for Initial value problems in ordinary differential equations, Medwell Online J. Eng. Applied Sci. 2(3). 504-508
Fatunla, S.O , Block methods for second order IVP's. Inter.J.Comp.Maths. 41(1991), pp. 55-63
Fox, L and Parker, I. B. (1968), Chebyshev Polynomials in Numerical Analysis. Oxford University press
Gear, C.W. (1965). Hybrid Methods for Initial Value Problems in Ordinary Differential Systems. SIAM Journal Numerical Analysis. 2: 69-86
Henrici,P., Discrete variable methods for ODE's. John Wiley, New York ,(1962)
Jain, M.K., lyengar, S.R and Jain, R.K. Numerical methods for scientific and engineering computation. New Age International (P) Limited Publishers, New Delhi
Jator, S.N. (2010), On the hybrid method with three off-step points for initial value problems. Int. J. Math. Edu. Sci. Technol. 41:110-118
Lambert, J. D, Computational methods for ordinary differential equations, John Wiley, New York, (1973)
Lambert, J. D , Numerical methods for ordinary differential systems. John Wiley, New York ,(1991)
Lanczos, C. (1956), Applied Analysis, New Jersey
Okunuga, S.A and Onumanyi, P. (1985). An accurate collocation method for solving ODEs. AMSE, France, 4(4): 45-48
Okunuga, S.A and Onumanyi, P. (1986). A collocation Tau method for the solution of ODEs. Abacus, 17: 51-60
Okunuga, S.A and Sofoluwe, A.B (1990). Acollocation method for non-linear ODEs. AMSE Rev., France, 13(4): 1-6
Onumanyi, P. and Ortiz, E. L (1984). Numerical solution of stiff and singularly perturbed boundary value problems with a segmented adaptive formulation of the Tau method. Math. Comput., 43: 189-203
Onumanyi, P., Awoyemi, D.O., Jator, S.N and Sirisena, U.W (1994). New Linear Multistep Methods with continuous coefficients for first order initial value problems. Journal of the Nigeria Mathematical Society 13: 37-51
Ortiz, E.L (1969). The Tau Method. SIAM J. Numerical Analysis, 6: 480-492
Shirley, J.Y. (2005). Implementation of Generalized Linear Multistep Methods for Stiff Differential Equations. Ph.D Thesis (Unpublished), University of Auckland..

