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ABSTRACT  
Parametric models require that the distribution of survival time is 
known and the hazard function is completely specified except for 
the values of the unknown parameters. These include the Weibull 
model, the exponential model, and the log-normal model. In this 
research work, Weibull Model is used for modelling survival time 
situations because it is flexible and also allows the inclusion of 
covariates. However, when the distributional assumptions for 
Weibull Model is not satisfied, Cox Proportional Hazard Model will 
be used, although semi-parametric, because it possessed a 
similar characteristic of covariates inclusion. The main objective of 
this research work is to determine if the cox proportional hazard 
model depend on the shape parameter of the Weibull model. And 
to investigate if there exist an advantage of using a parametric 
form of the survival distribution (Weibull distribution) instead of the 
semi parametric cox proportional hazard model when the 
parametric form of the model is known. This has two phases, the 
simulated and the real life data approach. We observed that the 
shape parameter of the Weibull model does not depend or have 
effect on the performance of the Cox Proportional Hazard model. 
And as the sample size increases the Mean Squared errors of the 
Maximum likelihood estimates of proportional hazard function of 
both the Weibull and Cox Proportional Hazard Models 
approximately the same. 
 
Keywords: Cox Proportional Hazard Model, Weibull Model, 
Slope, Shape parameters, Scale parameter, Survival time. 
 
INTRODUCTION 
Survival analysis studies the amount of time that it takes before a 
particular event, such as death, occurrence of a disease, 
marriage, divorce, occurs. However, the same techniques can be 
used to study the time until any event occur. While a time-to-event 
study is theoretically simple to undertake, in practice there are a 
number of problems if the event being studied is relatively rare or 
takes a long time to occur. For instance, a study of death rates 
might be highly difficult to undertake if most subjects outlive the 
term of the study, or drop out of the study while it is in progress. 
Results from such analysis are used to help in calculating 
insurance premiums. Survival analysis is for analyzing the 
expected duration of time until one or more events happen, such 
as death in biological organisms, lifetime of the battery in a laptop, 
and the employment time of employees for a certain company 
and failure in mechanical systems. 
Survival data could be derived from laboratory studies of animals 
or from clinical and epidemiologic studies. Survival data could 
relate to outcomes for studying acute or chronic diseases. 

Survival time refers to a variable which measures the time from a 
particular starting time (time initiated the treatment) to a particular 
endpoint of interest (attaining certain functional abilities). The time 
to event or Survival time can be measured in days, weeks, years, 
and so on. It is important to note that for some subjects in the 
study a complete survival time may not be available due to 
censoring.  
To this effect, both uncensored and censored data were 
simulated and used as well as real life data on Tuberculosis (TB) 
Patients, collected from University College Hospital (UCH), 
Ibadan, with the Age, sex, date admitted, date discharged, length 
of stay, and censoring obtained from each of 132 TB patients. 
The time it takes for this event or disease to take place in a given 
individual is called survival time. 
TB is a widespread disease and in many cases fatal infectious 
disease caused by various strains of mycobacteria. It is spread 
through the air when people who have an active TB infection, 
cough, sneeze, or otherwise transmit respiratory fluids through 
the air. Most infections do not have symptoms, known as latent 
tuberculosis (Mason, 2015).  
Multiple factors contribute to the global increase in TB infection 
with the human immunodeficiency virus (HIV) which causes 
acquired immune deficiency syndrome (AIDS), is the single 
greatest risk progression of TB infection to active disease. People 
with HIV have a weakened immune system that increases their 
susceptibility to TB, and in these people, TB often progresses 
rapidly from the primary to the secondary stage. The increase of 
TB incidence is highest in Africa and Asia, areas with the highest 
number of people infected with HIV (WHO, 2009a; 2009b). 
A second factor contributing to TB resurgence is the failure of 
patients to complete the full 6 months of antibiotics therapy 
required to cure the disease. Many people stop taking antibiotic 
when they begin to feel healthier, but unsuccessful treatment of 
TB requires therapy beyond the period of obvious symptoms. 
When patients fail to follow the prescribed treatment, they may 
become actively infectious, spreading the disease to others. 
Failure to complete the full round of treatment also can cause the 
emergence of TB bacterial strains with acquired drug resistance 
further complicating treatment by increasing the length and cost of 
therapy. Other factors are migration, international air travel, and 
tourism also had contributed to the global spread of TB. The 
extreme difficulty of screening immigrants and travelers for TB 
allows the disease to cross international borders easily. The 
substantial increase in homelessness, and the related 
circumstances of poverty, overcrowding, and malnutrition, also 
contributed to the increased incidence of TB in the United States 
and other industrialized countries during the early 
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1990s.Industrialised nations with good public health systems have 
been able to control the recent TB resurgence, curbing the spread 
of TB on a global scale will require ongoing international efforts. In 
the future, combating TB throughout the world will require 
advances in molecular biology, researches into the genetics of TB 
in order to understand drug resistance, and the continuous 
development of new drugs, as well as the prospect of 
synthesizing additional vaccines (Atun et al. 2005; Rios et al. 
2000, Bacaër et al. 2008). 
Mean Squared Error (MSE) and Standard Error (SE) are being 
used in comparing the two models, Weibull and Cox proportional 
hazard model, because we seek estimators that are unbiased and 
have minimal standard error.    
The main objective of this research work is to determine if the Cox 
proportional hazard model depend on the shape parameter of the 
Weibull model. And to investigate if there exist an advantage of 
using a parametric form of the survival distribution (Weibull 
distribution) instead of the semi parametric Cox proportional 
hazard model when the parametric form of the model is known. 
 
METHODOLOGY 
Parametric models require that the distribution of survival time is 
known and the hazard function is completely specified except for 
the values of the unknown parameters. Examples include the 
Weibull model, the exponential model, and the log-normal model 
(Richards, 2012). 

The analysis of these survival times is best done when all the 
survival times are known. However, there are many instances 
when this is not the case. Observations in this category are said 
to be censored data. A terminally ill patient may live to end of the 
study, or a mechanical component may not malfunction during the 
times it is being observed. In these cases, the survival times of 
the observations are not known, but it is known to be at least as 
long as the time of the study. This is called Type I censoring when 
all censored data have the same length (Singh and 
Mukhopadhyay, 2011, Brostrom, 2012; Angella, 2008).  
Type II censoring is a type of censoring in which all individuals 
begin at the same time and the study is terminated once a 
specified number of failures is reached. The remaining 
observations are then censored to the point at which the longest 
uncensored observation failed (Angella, 2008; Richards, 2012; 
Brostrom, 2012).  
Two important functions for describing survival data are the 
survival function and the hazard function 

The survival function, )(tS , of an individual is the probability that 

they survive until at least time t 

 ……………………………………….…….. (1) 
 
where t is a time of interest and T is the time of event 
 
The survival curve is non-increasing (the event may not reoccur 
for an individual) and is limited within [0,1]. Note that the event 
might not happen within our period of study and we call this right-
censoring. 
In terms of the cumulative distribution function F(t), the survival 
function can be written as: 
 

 .. (2) 

From this, it is easy to see that S(t) is non-increasing and has the 
following properties 

 …………………………………………. (3) 
 
The rate of survival can be depicted using a survival curve, in 
which a steep curve would indicate a low rate and a gradual curve 
would represent a high rate of survival (Kalbfleisch,and Prentice, 
2002; Brostrom, 2012). 
The hazard function λ(t) is a related measure, telling us the 
probability that the event T occurs in the next instant 

)( tt   given that the individual has reached time step t 

 …………………….. (4) 

The hazard function λ(t) is non-parametric, so we can fit a pattern 
of events that is not necessarily monotonic. 
The hazard function is the rate of death/failure at an instant t, 
given that the individual survives up to time t. It measures how 
likely an observation is to fail as a function of the age of the 
observation. This function is also called the instantaneous failure 
rate or the force of mortality (Angella, 2008; Singh and 
Mukhopadhyay, 2011). It is also defined as 
 

 ……………………………………….. (5) 

where 𝑓(𝑡) is the probability density function of T.  

Hence, in terms of the survival function, 

 …………………………………….. (6) 
Thus, 
 

 …………………………….. (7) 
and since  
 

1)0( S  

 ………………………………… (8) 
Therefore, the pdf of the distribution can be found from the hazard 
and survival functions 

 ………………………………... (9) 
The Weibull model is characterized mainly by the shape and 
scale parameter of its distribution (Angella, 2008). The cumulative 
distribution function of the Weibull distribution is given as 

 ……………………… (10) 
where 𝜃 is the scale parameter and 𝛾 is the shape parameter, 

and the probability density function of the Weibull distribution is 

 ……………………….. (11) 
The survival function and hazard function of the Weibull 
distribution are 
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 ……………………………………. (12) 
and 

 ……………………………………. (13) 

respectively, where 𝜃 is the scale parameter which is explained 

by covariate or explanatory variables given below 

 ……………………. (14) 
where β is a 1 x 2 vector of coefficients and X is a 2 x 1 vector of 
explanatory variables (age and sex as we have it in the data on 
Tuberculosis). 
The parameter is estimated using Maximum Likelihood Estimation 
(MLE) method. The likelihood function is 

………… (15) 
The log-Likelihood is 

 …. (16) 

 ….. (17) 

 only depends on survival time through 


it . 

The random variable 
TU  which has an exponential 

function 

 …………………………….. (18) 
Therefore, the distribution of the MLE of θ only depend on u and 
not on shape parameter 𝛄. 

The Cox Proportional Hazard model gives a semi-parametric 
method of estimating the hazard function at time t, given a 
baseline hazard that's modified by a set of covariates: 

 …. (19) 

where )(0 t  is the non-parametric baseline hazard function, t 

is survival time and X is explanatory variables and X is a 

linear parametric model using features of the individuals, 
transformed by an exponential function (Cox, 1972; Zhou, 2000; 
Singh and Mukhopadhya, 2011). 
 
The partial likelihood (Breslow, 1974) for Cox proportional hazard 
model is given as 

 ……………………… (20) 
Assuming there is no ties, the log-partial likelihood is 

 ………. (21) 

The partial likelihood depends only on the ordering of the survival 
times, not on the actual values, so it is invariant to monotonic 
transformation of time. 
 
Simulation Study 
A simulation study was done to compare the Mean Squared 
Errors (MSE) of Maximum Likelihood Estimate (MLE) of PH-slope 

of the Weibull and the Cox proportional hazards models when 
data are generated from a Weibull distribution.  
The data were simulated from a Weibull distribution with survival 
function 

 ……………………………………………. (22) 
That is, the model is Weibull with β = 1 for the slope of the 
covariate X, shape parameter γ = 2, and baseline hazard function 

2

)( t

o et  . The values of the covariate  21, XXX  , 

with )49,55(~1 NX  and )5.0,1(~2 binomialX . The 

total sample sizes are 15, 45, 90, 180, 450 and 1200 with one 

third (
3
1 ) of each as observations for each value of X. The data 

were simulated using the fact that the random variable U = F(T) 
has a uniform distribution. Where T is a Weibull random variable 
with cumulative distribution function F(t). 
 
For this study, a value of T was obtained at 

 ………………………………… (23) 

where 2),1,0(~ UU  is the Weibull shape parameter and 

β=1 is the Weibull scale parameter. 
 
The uniform random variable was generated using the R random 
number generator. Data were simulated without censoring and 
with 10% random censoring. 
 
The parameters in the Weibull model may be estimated in R-
program with the SURVREG, an R package designed for 
simulation in survival analysis with Weibull Model as underlying 
distribution, which uses the MSE method as stated in equations 
(16 to 18).  The parameters in the Cox Proportional Hazards 
model may be estimated with the COXPH, another R package 
also designed for simulation in survival analysis with Cox 
Proportional Hazard Model as underlying distribution, which uses 
a form of a partial likelihood function as the default option as 
stated in equations (20 to 21). However, it is important to 
understand that SURVREG and COXPH procedures use different 
parameterizations in estimating the parameters. The coefficients 
that are estimated by the two procedures are not the same, but 
they are related. COXPH uses the model. 
 
The maximum likelihood estimates of PH-slope using the 
parametric Weibull model was obtained from SURVREG 

procedure, as 
1
ˆˆˆ   where ̂  is the estimate of the shape 

parameter and 1̂  is the estimate of the slope of the Weibull 

model as parameterized in the package. Since the shape 
parameter is known to be 2, an estimate of PH-slope that takes 

advantage of this fact, 1
ˆ2 was also obtained. The estimate 

of PH-slope from the Cox proportional hazards model was 
computed using COXPH procedure.  
K=1000 replications of each sample sizes were run and the Mean 
Square and Standard Errors of the PH slope are obtained 
respectively as 

 …………………………………….. (24) 
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 ……………………………… (25) 
Where β = 1, SDev is the standard deviation ( ). The 

distributions of i̂  from the maximum likelihood estimates of the 

Weibull parameters and from the Cox proportional hazards model 
do not depend on the value of the shape parameter γ. Thus, the 
mean square errors apply to all Weibull shape parameters. 
 
RESULTS AND DISCUSSION 
Analysis of daily average wind speed data (2004-2014) showed 
various sample sizes were considered and the MSE and SE for 
each sample sizes were replicated 1000 times. R statistical 
package was employed for simulation and the data analysis. 
For the simulated data, we considered two cases, uncensored 
and censored. 
 
Case 1a: Uncensored Data 
 
Table 1: MSEs and Standard Errors of PH Slope for Complete 
Samples on Uncensored Data 

 
Table 1 has the means square errors and the standard error of 
PH Slope for the complete sample case. Here it can be seen that 
when the shape parameter is unknown, the estimates of the Cox 
proportion hazards model and the maximum likelihood estimates 
of the Weibull model perform almost similarly, but when the shape 
parameter is known, it far out-performs the Cox proportional 
hazards model (lower MSE). We can then conclude that when the 
distributional assumptions are not known, or are not met, the Cox 
proportional hazards model should be considered keeping in mind 
that the Weibull model when the distributional assumptions are 
not met stand a good chance as well. 
   
We also observed that as the sample size increases from n=180 
to 1200 the MSE’s for maximum likelihood estimate of the Weibull 
is approximately the same as that of the cox proportional hazard 
models. 
 
Case 1b: Censored data 
 
Table 2:  MSEs and Standard Errors of PH Slope for Complete 
Samples on Censored Data 

 

Table 2 presented the results for the censored sample case. The 
patterns are similar to the uncensored sample case. The MSEs 
are smaller for the maximum likelihood estimates and the Cox 
proportional hazards model estimates of PH Slope when the 
shape parameter is known, but much bigger for the maximum 
likelihood estimates of the Weibull model when the shape 
parameter is unknown. The MSEs for censored data are larger 
than uncensored data. 
 
Smaller MSEs of Cox proportional hazard model will give it an 
upper hand over Weibull model when the shape parameter is 
unknown. This suggests that for censored data, cox proportional 
hazard model should be preferred over Weibull model when the 
distributional assumptions are not met. 
 
Results from a Real Life Data on Tuberculosis 
The real life data were used in two forms; the original and the 
transformed survival time of Tuberculosis patients. The data were 
secondary data, consist of records of 132 patients admitted over 
the period of six years (2009 – 2014) collected from University 
College Hospital (UCH), Ibadan. The patients’ Age, Sex, Length 
of stay in the hospital (in days, which is considered as survival 
time), as well as their censoring code (Dead (0) or Alive (1)) were 
observed in this work. 
 
Case 2a: The Original survival time 
 
Table 3: Results Using SURVREG Code in R for Untransformed 
Survival Time 

 
 
Table 4: R result COXPH (Estimates of PH Slope from Cox 
Proportional Hazard Model for Untransformed Survival Time) 

 
 
Table 5: Estimate of PH Slope from Weibull Model for 
Untransformed Survival Time 

 
 
Survival data from 132 patients with tuberculosis, Age is a 
continuous covariate, Sex is categorical covariate which takes 0 
for Male and 1 female and Censor indicates censoring where 
Censor = 1 is a censored observation.  From Tables 4 and 5, the 
PH slope for both Cox proportional hazard and Weibull models 
are almost the same with the same pattern of directions and 
signs. 
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Case 2b: The Transformed survival time 
 
Table 6: Results Using SURVREG Code in R for Transformed 
Survival Time 

 
 
Table 7:  R result coxph (Estimates of PH Slope from Cox 
Proportional Hazard Model for Transformed Survival Time) 

 
 
Table 8: Estimate of PH Slope of Weibull Model for Transformed 
Survival Time 

 
 
From Tables 7 and 8, the PH slope for both Cox proportional 
hazard and Weibull models are approximately the same in 
patterns of direction and signs when the survival time is 
transformed. Lastly, comparing the two cases for real life data the 
PH slopes for the two are almost the same. 
 
Conclusion 
We observed that as the sample size increases the Mean 
Squared errors of the Maximum likelihood estimates of 
proportional hazard function of both the Weibull and Cox 
Proportional Hazard Models approximately the same. 
 
It was noted that Cox proportional hazard model tends to be 
better, it exhibited smaller MSEs, than Weibull model when the 
shape parameter is unknown. This suggests that for censored 
data, Cox proportional hazard model should be preferred over 
Weibull model when the distributional assumptions are not met. 
 
We also observed that the Weibull model is a better option for 
analyzing data on diseases like Tuberculosis used in this 
research work only if the distributional assumptions can be met 
and the shape parameter is known. But for uncensored data when 
the distributional assumptions are not met and shape parameter 
unknown, both models can be used interchangeably. The shape 
parameter of the Weibull model does not depend nor has effect 
on the performance of the proportional hazard model. 
 
Finally, either of the two models could be adopted for modelling 
data on diseases like Tuberculosis based on their performances 
in this research. 
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