EVALUATION OF FOOD CONTACT SURFACES IN SELECTED RESTAURANTS OF KADUNA STATE UNIVERSITY FOR THE PRESENCE OF Escherichia coli AND Staphylococcus aureus

1Department of Microbiology, Faculty of Science, Kaduna State University, Kaduna, Nigeria
2Department of Biological Sciences, Bowen University, Iwo, Nigeria
3Department of Microbiology, Federal University of Technology, Minna, Nigeria
4Department of Biological Sciences, Niger State Polytechnic, Zungeru, Nigeria.

*Corresponding Author’s Email: mosada78@gmail.com or mohammed.sambo@kasu.edu.ng Tel: +2348035861774

ABSTRACT
The evaluation of food contact surfaces in Kaduna State University restaurants for the presence of Escherichia coli and Staphylococcus aureus were investigated. Five (5) selected restaurants in Kaduna State University were evaluated to assess the cleanliness of the surfaces that come into contact with food. Fifty (50) swab samples were collected from five (5) restaurants with three (3) samples each from plates, spoons and two (2) from chopping boards and tables. The samples were analysed using streak plate technique and biochemical tests to identify the bacterial isolates. Out of the 50 samples analysed, 13 (26 %) were positive for Escherichia coli and 0% was positive for Staphylococcus aureus. Out of the 13 that were positive for Escherichia coli, 8 (61.5 %) were from plates, 3 (23.1 %) were from chopping boards and 1 (7.7 %) was from table and spoon each. Eleven (11) (84.6 %) isolates of E. coli were susceptible to pefloxacin and tarivid each and 3 (23.1 %) isolates of E. coli were intermediate to septrin and ciprofloxacin each. While 6 (46.2 %) isolates of E. coli were resistant to amoxicillin and 7 (53.8 %) isolates of E. coli were resistant to sparfloxacin. This suggests that there is need for enlightenment of food handlers on the importance of good hygienic practices. Like introducing Hazard Analysis and Critical Control Point (HACCP) systems in food production and practices.

Keywords: Contact surfaces, restaurants, swab, streak plate, hygienic practices

INTRODUCTION
Food is defined as any edible or nourishing substance which when eaten sustains life, promotes growth and provides energy. Foods eaten are rarely sterile as they carry microbial associations. Since the beginning of recorded history, food and microorganisms have interesting associations. Nutrition of food is not just limited to consumers; they are also a good source of nutrition for growth of microorganisms (Dilbaghi and Sharma, 2007). Microorganisms in food can be from the natural micro-flora of the raw material and can be introduced during slaughter or harvesting, processing, storage and distribution (Adams and Moss, 2008). Surfaces that food comes in contact with are known as food contact surfaces which include; utensils, worker’s hands, worker’s clothing, all equipment, facilities and packaging materials. These surfaces and food handler’s hands are important means of pathogen transmission (Blackburn, 2003). These surfaces have been found to constitute a constant risk to the transfer of microbes and also contribute to cross infection. Many cases of foodborne illnesses are linked to contaminated raw ingredients usage, improper cooking and control of temperature but also, cross contamination of food through food contact surfaces is also a risk factor (DeCasare et al., 2003).

Food contact surfaces are defined as surfaces that come in contact with human food during food processing. They include utensils, equipment, packaging material, hands and worker clothing. Food needs to be safe, wholesome and acceptable as it is important for human survival (Begani et al., 2012).

In food service establishments, the main sources of microbial contamination has been discussed by several studies which include dirty food contact surfaces, poor personal hygiene practices, and inappropriate storage temperatures. After these studies, it has been revealed that the main sources of microbial contamination are food contact surfaces (Griffith and Clayton, 2005).

Occurrence of food borne diseases and improper sanitary practices in food production causes risk in food safety. As a result of the nature of interpersonal interactions, school environments are prone to epidemiological outbreaks (Lee and Greiga, 2010). Introduction of an additional variable that supports microbial growth, such as food increases the risk. During food preparation, food contact surfaces may easily be contaminated with significant amount of pathogenic microbes thereby, compromising food quality (Begani et al., 2012). Upon consumption of contaminated foods, students can be infected with pathogenic bacteria such as Escherichia coli, Salmonella sp, Staphylococcus aureus and are at risk of developing pathological conditions (Lee and Greiga, 2010).

Escherichia coli popularly abbreviated as E. coli is a member of the bacterial family Enterobacteriaceae (Meng and Schroeder, 2007). Escherichia coli is a gram negative bacillus and is found in the intestines of mammals. They are often the most abundant facultative anaerobes in the environment. Due to its occurrence in faeces, it is used as an indicator of faecal contamination (Adams and Moss, 2008). Contaminated food and water are the sources of exposure to Escherichia coli. There are strains of Escherichia coli that are harmless and there are also strains that are pathogenic or harmful. Some harmful strains of Escherichia coli include: Enteropathogenic Escherichia coli (EPEC), Enterohemorrhagic Escherichia coli (EHEC), Enteroinvasive Escherichia coli (EIEC), Enterotoxigenic Escherichia coli (ETEC) (Gerba, 2009).

Staphylococcus aureus on the other hand is a gram positive coccus. It is a member of the bacterial family Staphylococcaceae and is part of the genus Staphylococci. The genus consists of...
many species such as *Staphylococcus epidermidis*, *Staphylococcus saprophyticus* and *Staphylococcus haemolyticus* (Washington, 2006). It was discovered in 1880 by a surgeon, Sir Alexander Ogston and in 1884, it was named by Rosenbach as *Staphylococcus aureus* (aureus; golden) due to the colonial pigmentation which is golden. It is usually found as a commensal which is associated with skin, skin glands and mucus membranes particularly in the nose of healthy individuals. As estimated, approximately 20-30% of the population are *Staphylococcus aureus* carriers (Heyman, 2004). However, it can become pathogenic when it enters into host tissue through inoculation by needles or trauma of the cutaneous barrier or through ingestion of contaminated food (Murray et al., 2003). The aim of this research was to evaluate food contact surfaces in Kaduna State University restaurants for the presence of *Escherichia coli* and *Staphylococcus aureus*.

MATERIALS AND METHODS

Collection of Samples
Fifty (50) swab samples were collected from five (5) restaurants with three (3) samples each from plates, spoons and two (2) chopping boards and tables. The swab sticks were removed from the sterile wrappings and the tip were moisturized by immersing it in nutrient broth for each sampling respectively. For each swab, the tip was pressed against the inside of the tube containing the moisturizer to remove excess fluid. The area to be swabbed were selected and the tips of the swabs were pressed onto the surface and streaked in two directions at right angles whilst rotating the swab stick between the fore finger and the thumb. Then the swabs were deposited back in the sterile wrapping, screwed tight and labelled separately as described by United States Department of Agriculture, USDA (2012).

Media Preparation
All media used were prepared according to the manufacturer's instruction. After preparation, it was allowed to cool to about 45°C. The working area was then disinfected using cotton wool and disinfectant. The prepared media was then poured into sterile petri dishes, bijour bottles or test tubes as the case may be and were allowed to solidify.

Isolation of Bacteria from Contact Surfaces
The swab sticks were streaked on the surface of Eosin Methylene blue agar and Mannitol Salt agar and were incubated at 37°C for 48 h. The suspected colonies were subcultured to obtain pure isolates (Oyeleke and Manga, 2008).

Characterization and Identification of Bacterial Isolates

Morphological and Cultural Characteristics
The following characteristics were observed; colour, shape, elevation, margin, surface and texture.

Gram Staining
Each isolate was picked and emulsified in a drop of saline on a slide to make a smear. The smeared slides were then allowed to air dry. After air drying, they were heat fixed in the flame of a Bunsen burner. After that, the slides were covered with crystal violet stain as the primary stain for a minute. It was rinsed with distilled water and then Gram’s iodine (mordant) was applied for a minute also. It was then rinsed with distilled water and acetone (decolouriser) was applied and rinsed immediately with distilled water. Lastly, safranin was applied as counterstain and rinsed with distilled water after 30 seconds. The slides were then left to air dry and after drying they were heat fixed by passing through the flame of a Bunsen burner; it was then viewed under the microscope using oil immersion objective to see the gram reaction (Oyeleke and Manga, 2008).

Biochemical Tests

Indole Test
This was performed on tryptophan broth by inoculating the media with the isolates. The test tubes were incubated for 24 h at 37°C. Result was read after adding Kovac’s reagent (Acharya, 2013).

Methyl Red Test and Voges-Proskauer Test
These was done in the prepared methyl red-voges-proskauer (MR-VP) broth. The isolates were inoculated in the media and incubated for 24 h at 37°C. Reagents added vary according to the test. For methyl red test, methyl red reagent was added and for the voges-proskauer test Barritt’s A and Barritt’s B reagents were added (Acharya, 2013).

Citrate Utilization Test
This was performed on Simon’s citrate agar. The medium was prepared according to the manufacturer’s instruction and it was poured into test tubes and kept in a slanted position to make an agar slants. The isolates were inoculated on the media and incubated for 24 hours at 37°C (Acharya, 2013).

Sugar Fermentation Test
Peptone water with yeast extract was prepared and then about 8 drops of methyl red was added as an indicator. Exactly 1 % of each sugar (glucose, lactose, sucrose and maltose) was then added to the media in test tubes containing Durham tubes. Wire loop was then used to inoculate the media with the isolates and incubated for 24 h at 37°C (Kar, 2008).

Antibiogram of Bacterial Isolates against Selected Antibiotics
The Kirby-Bauer disc diffusion method was used. Using an inoculating loop, test tubes of nutrient broth were inoculated with the test organisms and incubated at 37°C for 24 h to obtain a 24 h broth culture of the isolates. Then, the turbidity of the 24 h broth cultures were adjusted to 0.5 McFarland standard. McFarland standard was prepared by mixing 99.5ml of 1 % sulphuric acid and 0.5ml of 1 % barium chloride. After that, Mueller Hinton agar was prepared according to the manufacturer’s instruction and then, it was poured into sterile petri dishes and allowed to solidify. A sterile swab was then used to inoculate the plates by dipping it in the suspension of the isolates and streaking on the surface of the agar. The plates were then allowed to stand for about 3 minutes. Using a sterile forceps, the gram negative multiple discs were then placed on the corresponding inoculated plates. The discs were pressed slightly to ensure contact with the agar. They were then incubated at 37°C for 18 h (Adetunji and Odetokun, 2012). The zones of inhibition were then measured and interpreted according to the recommendations of National Committee for Clinical Laboratory Standards, NCCLS (2004).
RESULTS

Table 1 showed the result of isolation of bacteria from food contact surfaces. Thirteen (13) bacteria isolates form the contact surfaces were suspected to be Escherichia coli due to production of green metallic sheen colonies on Eosin methylene blue agar (EMB). Table 2 showed the result of isolation of bacteria from food contact surfaces in which none of the bacteria had the characteristics of Staphylococcus aureus on mannitol salt Agar (MSA) which appears as yellow zones in the medium. Table 3 showed the morphological and the biochemical characteristics of the bacteria isolates. All the isolates were found positive for indole and methyl red test and were negative for voge-proskauer and citrate utilization test. They were also able to ferment the four sugars used (lactose, glucose, maltose and sucrose) by producing acid and gas. Acid production was indicated by colour change from red to yellow and gas production was indicated by appearance of bubbles in the Durham tubes. Table 4 showed the result of the sensitivity test of the bacteria isolates to 10 different antibiotics.

Eleven (11) (84.6 %) isolates of E. coli were susceptible to pefloxacin and tarivid each and 3 (23.1 %) isolates of E. coli were intermediate to septrin and ciprofloxacin each. While 6 (46.2 %) isolates of E. coli were resistant to amoxicillin and 7 (53.8 %) isolates of E. coli were resistant to sparfloxacin.

Table 1: Isolation of Escherichia coli from Food Contact Surfaces

<table>
<thead>
<tr>
<th>Restaurants</th>
<th>Plates</th>
<th>Spoons</th>
<th>Tables</th>
<th>Chopping boards</th>
<th>Number of positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2/10</td>
</tr>
<tr>
<td>B</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>4/10</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>0/10</td>
</tr>
<tr>
<td>D</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3/10</td>
</tr>
<tr>
<td>E</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>4/10</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>15</td>
<td>10</td>
<td>10</td>
<td>13/50</td>
</tr>
</tbody>
</table>

Table 2: Isolation of Staphylococcus aureus from Food Contact Surfaces

<table>
<thead>
<tr>
<th>Restaurants</th>
<th>Plates</th>
<th>Spoons</th>
<th>Tables</th>
<th>Chopping boards</th>
<th>Number of positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>0/10</td>
</tr>
<tr>
<td>B</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>0/10</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>0/10</td>
</tr>
<tr>
<td>D</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>0/10</td>
</tr>
<tr>
<td>E</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>0/10</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>15</td>
<td>10</td>
<td>10</td>
<td>0/50</td>
</tr>
</tbody>
</table>

DISCUSSION

Result of this study has shown that there were contaminations of food contact surfaces in Kaduna State University with Escherichia coli. This might be as a result of the type of water used to wash and clean the surfaces which may be feacally contaminated. Absence of Staphylococcus aureus might be that the organism is transmitted through the food handlers or those washing the surfaces by activities such as sneezing or coughing which may not necessarily occur. This agrees with the report of the findings of...
Conclusion
Contamination of food contact surfaces by only Escherichia coli was revealed in this study. Thirteen (13) Escherichia coli isolates were isolated and identified while no Staphylococcus aureus was isolated from the contact surfaces sampled. Antibiogram of the isolates showed that they were more susceptible to pefloxacin and tarivid each, 3 (23.1 %) were intermediate to septraxin and ciprofloxacin each while 6 (46.2 %) were resistant to amoxicillin and 7 (53.8 %) were resistant to sparfloxacin. These findings are in partial agreement with Al-Ferdous et al. (2012).

Recommendations
1. Water used for washing and rinsing dishes and utensils should be from a good source and should be changed at regular intervals before it is too dirty.
2. Food handlers should improve their personal hygiene especially of their hands by washing thoroughly after using the toilet or after handling raw foods.
3. Food handlers should clean their food contact surfaces with warm soapy water and sanitize with sanitizers such as chlorine especially after these surfaces have come in contact with raw foods. Washed dishes and utensils should be kept covered to prevent contamination by dust, droplets from speaking and sneezing and flies that carry infectious agents on their body surfaces.

REFERENCES
Swabbing Method.

