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ABSTRACT  
Failure of Cluster Systems has proven to be of adverse effect and 
it can be costly. System administrators have employed divide and 
conquer approach to diagnosing the root-cause of such failure in 
order to take corrective or preventive measures. Most times, 
event logs are the source of the information about the failures. 
Events that characterized failures are then noted and categorized 
as causes of failure. However, not all the ’causative’ events lead 
to eventual failure, as some faults sequence experience recovery. 
Such sequences or patterns constitute challenge to system 
administrators and failure prediction tools as they add to false 
positives. Their presence are always predicted as “failure 
causing“, while in reality, they will not. In order to detect such 
recovery patterns of events from failure patterns, we proposed a 
novel approach that utilizes resource usage data of cluster 
systems to identify recovery and failure sequences. We further 
propose an online detection approach to the same problem. We 
experiment our approach on data from Ranger Supercomputer 
System and the results are positive.  
 
Keywords: Change point detection; resource usage data; 
recovery sequence; detection; large-scale HPC systems 
 
INTRODUCTION 
In cluster systems, faults observed may not always lead to a 
system failure. However, whenever it does, such failure is costly, 
due to system downtime. In order t to have a glimpse at the cause 
these failures, system administrators most times rely on the logs 
produced by these systems. Also, these logs are useful in 
inferring the root causes of such failures and for taking corrective 
or preventive measures. In Oliner and Aiken, (2011), the authors 
pointed out that in reality, there exists no description of a correct 
system. This is true as so many components are involved and 
system administrators are probably unaware of some happenings 
within the system, sometimes, until a problem is noticed. Root 
cause analysis has been employed to trace causes of such 
failures, most times from the logs. Work by Gainaru et al., (2011; 
2012) characterized some of these faults based on frequency of 
occurrence using signal processing. They came up with a good 
way of identifying patterns of these faults from error 
messages/logs where they are either classified as silent, noisy or 
periodic signals. The characterization gives an insight to how 
some failures behave. The presence of certain error message 
types characterizes some particular failures. That is, their 
presence is an indication of imminent failure. Some of these 
errors result in spurious logging of messages. For example, a 
network failure could result in spurious logging of “communication 
failed” events. Some failures may behave differently in terms of 
the symptomatic messages logged. Another example is memory 

problem; it can be characterized by chatty error messages. The 
anticipated failure as a result of these faults and errors may 
eventually not occur. This happens for network fault if a recovery 
is completed Chuah et al., (2010; 2011), likewise memory errors 
which may be corrected by error correcting code (ECC), even 
though, from the event logs, there is every indication that these 
faults will result in failure (Makanju et al., 2010a); Gainaru et al., 
2012) Most times, it is very difficult for system administrators to 
know if such faults would eventually lead to the failure or not. 
Previous work Gurumdimma et al., (2015) on detecting faults 
using logs has shown that this problem increases detection false 
positives. 
 
In this work, we want to identify those sequences which, from its 
patterns of events are indicative of failure, but, however, do not 
end up causing any failure. This work is similar to the work in 
Gurumdimma and Jhumka, (2017), however, in this, we further 
propose an online method of identifying these recovery patterns. 
We refer to these patterns as recovery sequences while those 
that end in failure as failure sequences. Event logs or error 
messages do not provide sufficient insight to deduce if such 
sequences end up in failure or not. Additional information may be 
required. We propose a novel approach based on change point 
detection that detects such sequences using resource usage 
data. Our detection approach demonstrates that re-source 
usage/utilization data can be useful in identifying recovery 
sequences with fmeasure of 64% when applied on resource 
usage data of Ranger Supercomputer System. 
 
The contributions of this paper are as follows: (1) We propose a 
new way of utilizing Resource usage/utilization data to identify 
recovery sequences among other failure sequences. (2) We 
propose a new method that employs change point detection 
(CPD) to detect points of anomalous resource usage within the 
sequence to detect recovery sequence and highlights the 
effectiveness and the limitations of this method. (3) We proposed 
an online approach to detecting recovery patterns. 
 
The rest of the paper is organized as follows: .We give an 
overview of related work from this field in Section II, Section III 
present an overview of the Ranger supercomputer and the 
resource usage data used. Section IV presents the methodology 
employed, discusses how we transform our data then we explain 
change point detection and the detection algorithm. We proceed 
to explain how we performed our experiments, the metrics used 
for evaluation and then discuss the results in Section V and 
conclude in Section VI. 
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Related Work 
Gainaru et al., (2012) effectively used signal processing method 
to analyses systems behaviour, considering the events as signals. 
They are able to characterize events and show that normal and 
faulty behaviours are different for different event types. They, 
however, dis-covered that some failure behaviour is similar to 
those that are not, an example is memory errors which behaves 
just as failure only that it is eventually corrected by ECC. They 
used the event logs to perform this analysis. In our approach, we 
focus more on the resource usage data since form the event logs, 
normal and failure events can have similar behaviour. We employ 
an unsupervised detection method to identify abnormal change in 
the use of the resources in the system. Other works that use 
signal processing approach includes (Giffin et al., 2002; Gao et 
al., 2004; Mutz et al., 2006; Oliner et al., 2008; Oliner and Aiken, 
2011). The work of Oliner and Aiken, (2011) established system 
components that affect an unusual behaviour or anomaly in 
system. The approach converted log entries into real-valued 
functions of time called “anomaly signals”. This measurement 
encodes deviation from the expected behaviour. The approach 
provides an understanding to how component interaction can 
point to and used for detecting system problems. Converting the 
logs into anomaly signals requires an understanding of normal 
system. This is one problem because it is difficult to obtain the 
normal behaviour in most cases. Our approach is different as it 
does not require converting the data into already known anomaly 
signals using resource usage data. 
 
Another method which combines both event logs and resource 
usage data to detect causes of failure is presented in Chuah et 
al., (2013) and Niyazi et al., (2017). The former combine both 
event logs and usage logs to diagnose root-cause of some 
intermittent faults. Applying statistical correlations, they found out 
that events correlated to” soft lockup failures are indeed 
responsible for those failures. The later model of the system 
behavior is in such a way that the performance is monitored 
online (Amanda, 2012). We use similar resource usage data; 
however, we seek to see those sequences that, even though, 
highly correlated with failures, will not end in failure. Our methods 
can also be used for detecting faults in systems. In Gupta et al., 
(2017), a survey failure in HPC systems was done. The work 
looked at different systems and performed failure analysis of 
those systems. Their findings corroborated that of approaches 
explained earlier. 
 
Other approaches that leverage information content of logs to find 
alerts in systems are (Oliner and Stearley, 2007; Oliner et al., 
2008; Makanju et al., 2010a; Makanju et al., 2010b). In 
formativeness of logs are captured with the notion called 
”Nodeinfo”. It obtains the informativeness of a node-hour by using 
the log entropy weighing scheme for node term weights. Our 
previous work Gurumdimma et al., (2015) on detection of failure 
patterns relied only on the entropy and behaviour of nodes and 
similar sequences to characterize a failure sequence. As 
mentioned earlier, these approaches are reported to contain false 
positives due the normal sequences that behave just as abnormal 
ones (Wayne, 2000; Liang et al., 2006). We believe that resource 
usage data will contain more accurate state of the system in 
terms of how resources are used when the system is normal or 
abnormal (Xu et al., 2009; Xiaoyu et al., 2012). Therefore, we 
employ a detection method that relies on change point detection 

and capture how these resources are used to detect recovery 
sequences. In this work, we further proposed an online approach 
to detecting the recovery patterns. 
 
SYSTEM AND DATA 
This section details the cluster system we focus on in our 
research. We subsequently explain the data (resource usage 
data), its structure and how it is obtained. 
 
A. Ranger Supercomputer 
A cluster system contains a set of nodes, jobs or tasks, 
production time, job scheduler and sets of software components 
(e.g. parallel file system). The job scheduler allocates jobs to 
nodes to execute within a certain production time, and all the 
components involved write messages to a writing container. This 
is a common model for most of the cluster vendors like Ranger, 
Cray, IBM etc. We explain the Ranger Supercomputer of Texas 
Advance Computing Centre for our case study. 
 
The Ranger supercomputer Hammond et al., (2010) is a cluster 
consisting of 4,048 nodes of which 3,936 are compute nodes and 
78 are Lustre File-system nodes. These nodes are connected via 
a high-speed Infiniband network. Each node generates its own log 
messages which are all sent to central logging system. Each node 
of a Ranger supercomputer runs a Linux Operating System 
kernel. Also, each node maintains its synchronization clock and 
the Sun Grid Engine powers its job scheduling process and 
resource management (Zhiling et al., 2010). 
Ranger supercomputer runs a Lustre file storage system. Lustre 
file-system is an object-based high performance network file 
system that performs excellently for high throughput I/O tasks. It 
is a widely utilized file system in the supercomputing world. The 
file system is made up of: 
 
i Meta -Data Server (MDS) that stores information like 

permissions, file names, directories etc. The MDS equally 
manages file requests from lustre clients. 

ii Object Storage Server (OSS) which provides file I/O 
services. It also treats network requests from lustre clients. 

iii Lustre Clients: The lustre clients includes visualization 
nodes, computational nodes, login nodes running the lustre 
paving way for file system monitoring. 

 
The Ranger supercomputer runs TACC stats Hammond, (2011), 
I/O performance monitoring software. It monitors and records the 
resource usage by jobs on each node. The software runs on each 
node and the data collected on each of the nodes are logged 
centrally and synchronized. 
 
B. Resource Usage Data 
Resource usage data are collected by TACC stats Hammond, 
(2011) at Texas Advanced Computing Center (TACC). Basically, 
it is a job-oriented and logically structured version of the 
conventional Sysstat system performance monitor. TACC stats 
record the hardware performance monitoring data, Lustre file-
system operation counts and InfiniBand device usage. The 
resource usage data col-lector is executed on every node and is 
mostly executed both at the beginning and end of a job via the 
batch scheduler or periodically via cron (Oliner et al., 2010). 
 
Each stats file is self-explanatory and it contains a multi-line 
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header, a schema descriptor and one or more record groups. 
Each stats file is identified by a header which contains the version 
of TACC stats, the name of the host and its uptime in seconds. An 
example of a stats file header is shown, for clarity: 
 
$tacc_stats 1.0.2 
 
$hostname i101-101.ranger.tacc.utexas.edu $uname Linux 
x86_64 2.6.18-194.32.1.el5 _TACC #18 SMP 
 
Mon Mar 14 22:24:19 CDT 2011 $uptime 4753669 
 
A schema descriptor for Lustre network usage parameters is seen 
below: 
 
!lnet tx_msgs,E rx_msgs,E rx_msgs_dropped, E tx_bytes,E,U=B 
rx_bytes E,U=B ... lnet - 90604803 95213763 1068 
808972316287 4589346402748 ... 
 
A schema descriptor has the character! Followed by the type, and 
followed by a space separated list of elements or counters. Each 
counter consists of a key name such as tx msgs which is followed 
by a comma-separated list of options. These options include: (1) 
E meaning that the counter is an event counter, (2) C signifying 
that the value is a control register and not a counter, (3) W =< BIT 
S > means that the counter is < BIT S > wide (32-bits or 64-bits), 
and (4) U =< ST R > signifying that the value is in units specified 
by < ST R > (e.g.: U=B where B stands for Bytes.). From the 
schema descriptor above, lnet - 90604802 gives records of the 
number of messages transmitted in the Lustre network. 
 
TACC stats is open sourced and can be downloaded1 and 
installed on Linux-based clusters. A list of the counters is shown 
in Table I. 
 

METHODOLOGY 
 
A. Methodology Overview 
Resource utilization data or usage data contains how much 
resources are being used by a particular job on a 
https://github.com/TACC/tacc stats 
 
Table I: List of 96 Elements of Resource Usage Data 

Type Element         Quantity 

 read bytes, write bytes, direct read,                     

 direct write, dirty pages hits,                    

Lustre 

dirty pages misses, ioctl, open, close,                    

mmap, seek, fsync, setattr, truncate, 23 
/work 

flock, getattr, statfs,alloc node, setxattr, 
 

  

 getxattr, listxattr, removexattr,  

 inode permission                            

 read bytes, write bytes, direct read,                     

 direct write, dirty pages hits,                    

Lustre 

dirty pages misses, ioctl, open, close,                    

mmap, seek, fsync, setattr, truncate, 23 
/share 

flock, getattr, statfs, alloc node, setxattr, 
 

 
                   

 getxattr, listxattr, removexattr,  

 inode permission                           

 read bytes, write bytes, direct read,                    

 direct write, dirty pages hits,                    

Lustre 

dirty pages misses, ioctl, open, close,                    

mmap, seek, fsync, setattr, truncate, 23 
/scratch 

flock, getattr, statfs, alloc node, setxattr, 
 

  

 getxattr, listxattr, removexattr,  

 inode permission                           

Lustre tx msgs, rx msgs, rx msgs 

dr
op
pe
d, 

6 
                  

/networ
k tx bytes, rx bytes, rx bytes 

dro
pp
ed 

                  

 pgpgin, pgpgout, pswpin, pswpout,  

 pgalloc normal, pgfree, pgactivate,                   

 pgdeactivate, pgfault,          

Virtual 

pgmajfault pgrefill normal,                         

pgsteal 
normal, pgscan kswapd 
normal, 21 memor

y 
                  

pgscan direct normal, pginodesteal, 
 

 
              

 slabs scanned,kswapd steal,                    

 kswapd inodesteal,               

 pageoutrun, allocstall pgrotated  
                   

 
particular node. This data could provide us with what is happening 
within the system regarding how resources are being utilized 
(Berrocal et al., 2014). For example, a high or low usage of 
memory or network resources or a sudden change in page swap 
rate could point to an abnormal behaviour which may lead to 
failure. In essence, an abnormal use of resources is a pointer to 
imminent failure (Xiang et al., 2011). 
 
We conjecture that a system which experienced a successful 
recovery from network error or memory error corrected by ECC 
may behave differently in its resource usage. Even though error 
messages may not provide a clear indication that failure will 
eventually occur, resource usage data within such time could 
provide a hint. Usage data within such time window could show 
unusual use/utilization, however, may eventually be normal if it 
does not end in failure due to successful recovery. Normal 
behaviour towards time of expected failure could point to 
successful recovery. 
 
In this work, we detail steps taken to identify sequences with 
successful recovery from error by detecting points of unusual or 
abnormal change within the sequence of resource utilization data 
for which failure is expected or has occurred. We utilized the idea 
of change point detection (CPD) to perform this. But before then, 
the data is first transformed to a format that can be used easily by 
the algorithm. 
 
B. Data Transformation 
Resource Usage data as earlier explained contains how much 
resources are used on a particular node as captured by different 
resource counters (see Table I). Each counter captures the 
amount of resources they are associated with. For example, a 
network counter (rx mgs dropped) captures the amount of 
messages dropped by a particular node. 
Hence a line of logged usage data contains all the counters and 
their usage values captured within certain period. Let us call these 
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lines of logged usage data as events, ei. These events are 
streams of time series data. For the purpose of our research, we 
capture these events within given time window, tw, called 
subsequence, xi. A sequence, S = x1, x2, …, xn, is then a stream 
of subsequences as illustrated in Figure 1. It is worth noting here 
that the choice of tw may be dependent on the time to failure of a 
fault and component. A reasonable small time is chosen to avoid 
capturing different usage patterns within a subsequence and also 
big enough for such subsequence to be informative. 

S= {e1, e2, e3, e4, …, en-2, en-1, en} 
 

x1 x2 xn 

 
Figure 1: Sequence of resource usage data 
 
We extract each xi as a vector of the sum of resource usage for 
each counter. For example, given subsequence x1, with counter tx 
bytes: 267, read bytes: 302, etc, then the vector x1= [267 302 ...]. 
Hence, the amount of resources used on nodes ni in 
subsequence xi are summed up for each counter. These values 
are then scaled to values between 0 and 1, forming a probability 
distribution. This is because in our change point detection 
algorithm, it accepts the data as probability distribution and this 
also becomes easier to handle and explained. We then construct 
a matrix of the sequence where the subsequence forms row 
vectors. Hence, given k number of counters and n subsequences, 
the matrix M is as given in Figure 2. 
 

  
 
Figure 2: Data matrix M with n subsequences of S, where xn;k is 
the value of counter k in subsequence n. 
 
From the matrix M, a vector representing S is formed by summing 
the values of each counter in a subsequence divided by the 
number of counters. That is, subsequence x1 = xi, 1 + xi, 2 + … + xi, 

k divided by k (counter size). This is done for all the n 
subsequences. Hence, the vector forms the input to the detection 
algorithm. 
 
C. Change Point Detection 
The objective of anomaly detection is to find a data point that 
behaves differently from others. The anomalousness now 
depends on the field of application where among many other data 
points, is a rare behaviour. Change Point Detection (CPD) (Liu et 
al., 2013) and Amanda, (2012)  is an anomaly detection method 
where it detects ”drastic change” observed from a sequence 
distribution. These points of drastic change are possible 
anomalies. Two classes of CPD are commonly used depending 
on the problem; they are: Real-time change-point detection (Liu et 
al., 2013) and Retrospective change-point detection. The former 

deal with detecting real-time changes in applications, a good 
example is responses in robots. The later deals with applications 
with longer response time and deals with retrospective data 
(Lakhina et al., 2005). 
 
In this work, we employ retrospective CPD to detect sudden 
changes in the utilization of resources by a super-computer 
system. Such sudden changes points to abnormal behaviour in 
the system. For example, sudden peak in memory or network 
resources usage could signal presence of faults and/or errors. 
 
Why CPD approach? Resource usage data are collected and 
logged as streams of time series data which is formed by the 
probability distributions of the resources used on a node by 
running jobs. Therefore, the level at which resources are utilized 
may vary with time and this changes can be captured using CPD. 
This is our motivation for using change point detection. We will 
discuss briefly two Retrospective CPD approaches we employed 
in our work. 
 
1) Cumulative Sum Change-Point Detection: Cumulative 
Sum (CuSUM) CPD approach Wayne, (2000) and Amanda, 
(2012), is based on the fact that sudden change in parameter 
corresponds to a change in the expected value of log-likelihood 
ratio. From the name, it tracks the cumulative sums of the 
differences between the values and the average. At points where 
the values are above average, the cumulative sum steadily 
increases. Therefore this method involves finding the mean and 
its difference with observation values. 
 
Given S = x1, x2, …, xn, (see Figure 1), we first initialize the 
cumulative sum, cS0 = 0 and obtain the mean of S (the row 
vectors), given as x, 
 

cSi+1 = cSi + (xi+1 - x)      (1) 
 
for all i = 1… n. 
 
Abrupt change points are those points with cSi values above 
threshold th. 
 
2) Divergence-Based Dissimilarity Measure: In this 
approach, a dissimilarity measure is introduced. We used 
Kullback Divergence (KLD) measure (Liu et al., 2013; Sandhan et 
al., 2013, Bisandu et al., 2018). 
 
The Kullback Divergence of two sequence distributions x and y 
(for simplicity, we assume x = xi and y = xi+1) is given by: 
 

       
where i is the index of probability values of vectors x and y. 
 
Figure 3 shows the CPD charts of sequences that end in failure 
and one that recover. Clearly form the chart, we noticed that low 
values change points for the recovery sequences as time 
progresses towards failure. This is low compared to failure 
sequence. This gives us an idea of how these two sequences 
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could behave based on how the resources are being used (during 
failure, recovery). We utilized this for our detection algorithm 
explained in the next section. 

 
 
Figure 3: Graph showing detection performance (F-measure) of 
both CPD methods used 
 
D. Detection of Recovery Sequences 
We detect multiple change points within a failure sequence. We 
conjecture that sequences that eventually end in failure are likely 
to contain change points and/or a sustain presence of such points 
leading up to time of failure. Meanwhile, sequences that 
eventually experience recovery may not contained many change 
points or sustained change points leading up to expected time of 
failure. These sequences may be characterized by relatively 
normal resource utilization if there is a successful recovery from 
faults. Given observations of usage data xi within a sequence S, 
that is, S = x1; x2; :::; xn where observations, xi, are made within a 
time window and time of occurrence of xi, tx1 < tx2 < … < txn . 
Then, we conjecture that for any failure sequence s, as the time 
tends towards time of failure, abnormal use of the resources can 
be noticed throughout the sequence and it is likely to be sustained 
across tx1 to txn. However, a recovery sequence will likely 
experience normal behaviour or normal resource usage 
eventually. This implies that it may likely contain less change 
points as it approaches predicted failure time. 
 
Algorithm 1: Sequence Detection 
 
1: procedure DETECT(S; th) 
 

2: cp = null . keeps the list of points above 

 threshold  

3: xi 2 S . vectors (subsequences) of S 

4: for i = 1 to jSj  1 do 

5: p(xi) =CPD(xi; xi+1) 

6: if (p(xi) >= th then   . th is change point 

 threshold  
 
7: add point (i) to list of change points (cp) 
 
8: end if 

 
9: end for 
 
10: if (if there are more than a point i greater than 
midpoint) then 
11: return Failure 
 
12: else 
 
13: return Recovery 
14: end if 
 
15: end procedure 
 
end 
 
From Algorithm 1, we detect multiple change points within the 
sequence. We keep the points which are seen as change points 
for the sequence. The sequence with change points occurring 
beyond the midpoint of the sequence will likely end in failure as 
we earlier explained. 
 
E. Online Detection of Recovery Sequences 
Online approach to identifying recovery patterns 
 
In this section, we propose an approach for an online detection of 
recovery patterns. The advantages of having the online version 
cannot be overemphasized. It saves system administrators from 
having to activate failure recovery or mitigation processes. 
 
The resource usage logs are periodically accessed as they are 
logged for analysis. When a failure is predicted to occur, failure 
recovery detection can be activated. In the algorithm, the 
sequence of events is accessed within a given time; normal 
approach for change point detection is applied on the first two 
time windows accessed. Subsequent time subsequences are then 
captured as they are logged and compared with previous ones. A 
significant deviation from the previous ones signifies a change in 
the pattern. However, we hypothesis that a failure pattern should 
consistently show similar pattern, any deviation may indicate a 
recovery. The approach is shown in Algorithm 2. 
 
Algorithm 2: Online Detection 
 
1: procedure DETECT 
 
2: x1=Obtain first data with specified time window 
3: x1 =transform(x1) 
 
4: x2 =Subsequent data within given time window 
5: x2 =transform(x2) . Convert to matrix 
6: cp =CPD(x1; x2) 
7: for i = 1 to n do 
 
8: xi = Obtain next data 
9: cpi =CPD(x2; xi) 
 
10: Ri = jcpi   cpj 
 
11: if (Ri >  ) then 
12: Suspicions + + 
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13: end if 
 
14: if Suspicious >= 1 then 
 
15: return Recovery 
16: else 
 
17: return Failure 
18: end if 
 
19: 
 
end 
 
EXPERIMENTS AND RESULTS 
The aim of this research is to develop a methodology to detect 
sequences that recovered from faults and did not end in failure in 
Ranger supercomputer system. To achieve this aim, we utilized 
the resource usage data of Ranger not the error logs. Our 
approach is then evaluated through experiments conducted on 
the resource usage data of the Ranger Supercomputer from the 
Texas Advanced Computing Center (TACC) at the University of 
Texas at Austin2 (Lee et al., 2013). 
As earlier explained in Section III, the resource usage data were 
collected using TACC Stats Hammond et al., (2010) that takes 
snapshots of utilization data of the 96 counters, this is done in 
ten-minute interval . Jobs generate their resource usage data on a 
particular node, which are then logged to the file system. The data 
are logged by each node through a centralized message logging 
system. The logs are combined and interleaved in time (Xu et al., 
2008). 
 
We evaluate the approach on four weeks of resource us-age data 
(32GB). These data were collected for the month of March 2012. 
We extracted the 96 elements or counters from the resource 
usage data as seen in Table I. From this data, we extracted 
failure sequences that have been established by the experts. 
From the data, more failure actually took place within the first and 
second week of March 2012 with few occurring in the third and 
fourth weeks. Among these failure sequences, are those that 
eventually did not end up in failure, but experienced recovery. 
Note that, the event/error logs was used by the experts to 
determine failure sequences based on the root-case analysis they 
did. We only extracted the corresponding resource usage data 
within the same time established as failure sequences from the 
error logs. We had a total of 660 sequences of which 182 are real 
failure sequences and 72 recovery sequences, the remaining are 
normal sequences. 
 
A. Evaluation Metrics 
We employ the widely used sensitivity, specificity and fmeasure 
metric to evaluate the approach. Sensitivity, also called true 
positive rate or recall measures the actual proportion of correctly 
detected recovery sequences to the total number of sequences as 
expressed in Equation 3. Specificity, or true negative rate, 
measures the proportion of complete failure sequences which are 
detected as recovery sequences among all faulty sequences as 
seen in Equation 4. Fmeasure here is synonymous with the usual 
fmeasure in information retrieval; however, in this case, it is the 
harmonic mean of sensitivity and specificity (see Equation 5). 

Since neither of sensitivity or specificity can be discussed in 
isolation, fmeasure which combines the two providing us with 
balanced detection accuracy is used. 

 
 
B. Results 
In the experiments, we evaluate our approach under various 
detection threshold values. The values of detection threshold, th 
is varied to obtain better value for both sensitivity and specificity. 
We show results and discuss for the two CPD methods (CuSUM, 
KLD) used. 
 
From the results seen in Figure 4 for using CuSUM approach, the 
true positive rate (sensitivity) performs low at th = 0.1; 0.2. It 
consistently increased (reaching a maximum sensitivity of about 
90%) as the value of th is increased. This shows that the more we 
increase the value (th) for which we decide if a point is indeed a 
change point or not, the better the detection of the recovery 
sequences. It achieved a highest sensitivity at th = 0.7, which 
remain constant for higher values of th. Likewise, the specificity is 
highest at lower values of th as expected and reduces from 70% 
to 20% at th = 0.6 and remains so for higher values. These results 
demonstrate that we can achieve good detection of recovery 
sequences when we use CuSUM change point detection method. 
However, it is much better if we can achieve better results with 
less false positives and false negatives. For this approach 
(CuSUM), a better result (fmeasure) is obtained at threshold th = 
0.3 as seen in Figure 6. It achieved about 63% detection. 
 

 
Figure 4: Result showing accuracy of detecting recovery 
sequences among failure sequences using Cumulative Sum 
change point detection and varying values of detection threshold, 
th. 
Similarly, using KLD method (see Figure 5), the results are similar 
to CuSUM. A highest sensitivity of about 84% is observed when 
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th = 0.5 and more. The specificity on the other hand, decreases 
with increase in th. The lowest specificity (10%) is obtained from 
th = 0.6 and remained so for higher values. Comparatively, 
CuSUM seems to slightly perform better over all the thresholds 
used. However, looking at the fmeasure in Figure 6, KLD 
performed high with detection of 64% at th = 0.2. This result is 
almost similar with the CuSUM approach (1% difference), the only 
difference is that they are achieved at different detection 
thresholds. 
 

 
Figure 5: Results showing accuracy of detecting recovery 
sequences among failure sequences using KLD change point 
detection, and varying values of detection threshold, th. 
 

 
Figure 6: Result showing fmeasure of detecting recovery 
sequences among failure sequences at varying values of 
detection threshold, th. 
 
Based on these results, it is very possible to achieve a good 
detection of faulty sequences which did not end in failure 
(recovery sequences) from usage data. Even though, this is not 
the best performance expected, however, it is a good starting 
point for exploring the use of resource utilization data of cluster 
systems to detection both failure sequences and recovery 
sequences applying change point the online approach, the data is 
collected within some time window as the system logs them. 
These failure patterns are identified on the fly as data about the 
usage of resources are collected. Hence the result of the offline 
version can be similar with the online version. An issue we 
envisage is that the time of execution of the algorithms might 
differ. 
 
Conclusion 

We proposed an approach for recovery sequence detection in 
large-scale distributed systems. The approach makes use of 
resource usage data to detect the recovery sequence among 
other failure sequences. The method leverages the fact that 
unusual use of resources by the systems could point to impending 
failure, to detect recovery patterns. Change point detection is 
employed to determine the points of anomaly within a sequence. 
These points of anomalous behaviour points to a recovery or 
failure sequence. We proposed a detection algorithm based on 
these parameters to determine if a faulty will eventually recover or 
end in failure. We further proposed an online version of the 
approach. We evaluated our methodology on the resource usage 
data from the Ranger supercomputer and the results has shown 
to detect recovery sequences with good accuracy. It achieved an 
fmeasure of 64%. 
As a future work, we intend to investigate the performance of this 
methodology on data from different cluster systems. 
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