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ABSTRACT  
In this paper, a mathematical model for the control of single weed 
species population density is proposed. The model’s steady-state 
solutions were obtained and analysed for local and global 
stabilities. The analysis reveals that the model is locally 
asymptotically stable and as well globally stable. Graphical 
simulations were carried out to support the analytic analysis of the 
model for the global stability and concludes that, weed 
proliferation may be controlled if the control strategy is target at 
the recruitment factors. Base on this finding, it is recommended 
that for effective control, weeds management tactics should be 
targeted at the recruitment stage rather than the usual practice of 
controlling mature weed through the application of herbicides. 
Hence, application of the results of this work may reduce or 
eradicate the weeds density and improve crop yield at its optimum 
capacity for sustainable food production. 
 
Keywords: Steady-state, local stability, global stability, weeds 
density control, recruitment stage. 
 
INTRODUCTION 
Weed is a term generally applied to any uncultivated plant 
species that grows and proliferate naturally in a place it is not 
wanted. Weeds exist only in natural environments that have been 
disturbed by human’s activities such as agricultural lands, 
recreational parks, and irrigation dams (Akobundu, 1987 in Nasir, 
et al, 2016). Weeds have had a detrimental effect on crop yield 
since the beginning of agriculture. Out of all the harmful pests 
(weeds, insects, pathogens etc) that impair crop performance, 
weeds have the biggest potential to reduce crop yield, and are the 
most common and difficult to control (Hartzler, 2000).   
Farmers and weed scientist who involved in managing weeds 
have long recognized how weeds can harm crop growth and 
productivity by competing for light, nutrients and space as well as 
hampering harvesting operations, reducing quality of the 
harvested crop and human activities (Nasir, 2014). Weeds 
however form an important part of the land ecosystem, 
contributing food and cover for animals and birds which are an 
important indicator of biodiversity health (Parsons et al, 2009).  
Managing crop pests such as weeds to limit both crop production 
loss and environmental impacts is a major challenge of agriculture 
(Nathanie, 2010) and one of the key elements of most agricultural 
system. 
The weed management strategies attempt to limit the deleterious 
effects of weeds growing with crop plants and the development of 
such weeds management system strategies requires thorough 
qualitative in-sight in the behaviour of weeds in agro-ecosystems 

and their effects. These effects can be quite variable and involves 
understanding the dynamic of weeds population (Nasir et al, 
2016).  
Population dynamics involve the study of population growth, 
composition and spatial dispersion. The objectives are to identify 
the causes of numerical change in population and to explain how 
this cause act and interact to produce the observed pattern. The 
most common method currently employed to manage weeds is 
the use of herbicides. In many developing countries, control of 
weed which was mainly based on manual weeding has been 
shifted to frequent and systematic applications of herbicides. The 
use and application of herbicides was one of the main factors 
enabling intensification of agriculture in the past decades (Kropff 
1993). Besides, nonchemical methods, such as hand weeding, 
sanding, flooding, and proper fertilization, remain integral for 
managing weed populations; new tactics such as flame 
cultivation, priority ratings have been developed to aid in weed 
management planning. Despite many efforts, biological control of 
weeds remains elusive on the commercial scale. However, 
evaluation of new herbicides, precision agriculture technology, 
investigation of other management practices for weeds and their 
natural enemies among others are research areas whose results 
will translate into new use recommendations for the weed control 
(Sander, 2018). 
 
As a consequence, there is an increasing need for improved 
strategies in weed control. An important element of such 
management strategies is the development of population models 
that are capable of predicting the results of control measures on 
weed densities. 
The aim of this research work is to introduce a control parameter 
into the discrete deterministic homogeneous model proposed by 
Nasir et al (2015) that studied the weed population dynamics, 
then obtain its steady states densities and analyse them for local 
and global stabilities for the purpose of controlling weeds 
proliferation to improve crop yield. 
 
MATERIALS AND METHODS 
Baseline for studies of population dynamics of weeds as with 
most plant species are usually on analysis of single species in 
defined habitats and often experimentally manipulated.  
In this paper, the researchers considered the work of Nasir et al 
(2015) in which they proposed a Discrete-Time mathematical 
model to described the proliferation of homogeneous population 
density dynamics of single weed species as given in (1). 

F
u

ll 
L

en
g

th
 R

es
ea

rc
h

 A
rt

ic
le

 

74 

http://www.scienceworldjournal.org/


Science World Journal Vol 14(No 1) 2019 
www.scienceworldjournal.org 
ISSN 1597-6343 
Published by Faculty of Science, Kaduna State University 

 

A Discrete-Time Mathematical Model For The Control Of Weeds Population 

Density Towards Improving Crop Yields 

1
1

t
t t

t

N
N N

aN


  


    (1) 

This is a non-linear difference equation for the density of mature 
weeds. Where 

Nt = density of established weeds in year t 

1
N

t
= density of established weeds in year t+1 

  = weed recruitment factor (i.e fraction of seeds that 

germinate, become mature and produce seeds,) 0   

a = Crowding coefficient (equivalent to the intra-specific 

competitions) 
  = the density independent fraction of 𝑁𝑡 surviving in the seed 

bank to the next season. 

1 taN




represents the density-dependent net recruitment rate 

from generation to generation. Therefore, Equation (1) gives 
homogenous model for a single weed proliferation with no control 
(Nasir et al, 2015). 
In this work, a control practice to reduce the population density of 
established weeds was considered by introducing a control 
parameter δ  into equation (1). Hence, it then becomes; 
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 Where (𝛽 − 𝛿)  is a control strategy, such that the control 

measure 𝛿 acts on the recruitment factor 𝛽 of the density-

dependent portion (i.e post emergency application) and applied in 
the year t. It is assumed that, the established weed densities in 
the year of control are reduced by a factor of δ prior to the seed 

production. So, 0 ≤ 𝛿 ≤ 1 .  Hence, 𝛿 = 0 means no control, 

while 𝛿 = 1 implies complete eradication of the weeds. 

Therefore, equation (2) gives the homogeneous model of a single 
weed proliferation where a control is applied every year. 
 
Analysis of the Model 
In this section, analysis of the homogeneous weed proliferation 
and control models (2) for single species was carried out. The 
existence and stability of the associated steady- states (fixed-
point) solutions are determined and interpreted biologically. 
 
The first step in understanding the dynamics of model population 
is to determine the steady-State solutions and their 
stabilities/equilibrium (Cushing & Yicang, 1994). That is, usually 
the first step to take in order to study the dynamics of any system 
is to find its steady- state solutions. So, the steady-state solutions 
of the models are obtained as follows 
 
Steady-state solutions of the control model  
A point is assumed to be a solution of the steady-state of the 
model equations only if all of its components are non-negative for 
biological and ecological significance  
To solve for the steady-states of (2), it is assumed that 

1t tN N  , implies that 1 0t tN N N       

   

So, we let  1t tN N N       (3) 

There are two nonnegative solutions of the steady-states for the 
single species weed model (2). So applying assumption (3), the 
steady-state of (2) satisfies the equation  

( )
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From equation (4) we have 

( )
1 0

1
N

aN

 

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 
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The zero steady state solution is 0N  . That is when
01 E

.  

Then, non-zero steady-state is obtained from (5) as 

( ) (1 )

(1 )
N

a
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
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


     (6) 

So, the second fixed point 
2

E  as given in (6) exists and positive 

provided 1   and (1 )     . Hence, the two non-

negative steady-states are 1(0)E  and 

2
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Local Stability Analysis of the steady-state solutions  
We obtained the derivative of RHS of equation (4) 

2
( )

(1 )
f N
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Evaluating (7) at 0N   gives 

(0)f        

E1( 0)  is stable if 1      , So if this happens, the 

weed density would approach zero and it goes extinct. Otherwise, 
it is unstable, and then there exists a unique positive value. 

Evaluating (7) at 
( ) (1 )
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N
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simplification gives 
2(1 )
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E2  is stable if  

2(1 )
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It implies  
1

1
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 





    (9) 

 
Proposition 1 

If 1     , then the non-zero steady-state E2 is locally 

stable, otherwise it is not stable. 
 
Proof 
Stability theorem for discrete one-dimensional population models 
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is adopted (Luis and Rodrigues, 2016). 
 
Theorem 1: If 𝑓(𝑥) is differentiable at �̅� then, a population model 

is locally stable if  |𝑓/(�̅�)| ≤ 1 . It is asymptotically stable if 

|𝑓/(�̅�)|  < 1  . Here �̅� is the unique equilibrium point of function  

𝑋𝑡+1 = 𝑓(𝑥𝑡). (Paul, 2007). 

Now suppose E1(0) is stable. It implies that 1     . 

For E2 to be stable, equation (9) must hold using Theorem 2.1, 
that is 

  
1

1


 





  

Implies, 1 ( ) 1 ( )           

then  1 1 2( )             

This completes the proof. Hence, the non-zero steady-state E2 is 
locally stable. While E1(0) is unstable. 
 
Global Stability of the steady-state E2(N)  
It is important to know whether or not a model is globally stable. 
Models having this property are predictable, while those that do 
not can exhibit unexpected behaviour (Heinschel, 1994). One of 
the tools used to prove global stability in difference equations is 
the Schwarzian derivative, which was first introduced into the 
study of one-dimensional dynamical system by David Singer 
(Heinschel, 1994; Eduarodo, 2007). 
The Schwarzian derivative (S) of f at a point x is given by 

 𝑺(𝑓, 𝑥) =
𝑓///(𝑥)

𝑓/(𝑥)
−

3

2
(

𝑓//(𝑥)

𝑓/(𝑥)
)

2

 

For any real valued function f with at least three continuous 

derivatives, wherever 𝑓/(𝑥) ≠ 0. The following proposition can 

be deduced from Singer’s results (Heinschel, 1994, Eduardo 
2007); 
 
Theorem 2:  
Suppose f is C3 and has at most one critical point �̅�(maximum). If   

|𝑓/(�̅�)| ≤ 1 and 𝑺(𝑓, 𝑥) < 0 for all 𝑥 ≠ �̅� then �̅� is globally 

stable. 
 
Calculation of the Schwarzian for (4) 
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This gives 
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We notice that, if    then  ( , ) 0f N S  everywhere. 

Hence, non-zero steady-state E2 is globally stable and the model 
may exhibit some predictable behaviours. So, the weed 
proliferation may be controlled or eradicated. 
 
Graphical Profile of the Global Stability for Weed Density 
Dynamics 
In this section, we give the graphical profile to support our 
theoretical analysis of the global stability of our model equation 
via the software package Mathematica 5.2. In all the figures, we 

fixed all parameters 0.6  , 20b  , and 0.5 

except   and  N so that we can investigate the effect of control 

𝛿  on the population of weed and be able to  plot the Schwarzian 

in 3-dimensions. 
 
 
 
 

 
Figure. 1:  Schwarzian of model (1) with no control 
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(a) 

 

   (b) 
 
Figure. 2:  Schwarzian of model (2) with control 
 
Interpretation 
The trough-like structures of each of the Schwarzian graphs 
(Figure 2a and b) shows the region where the Schwarzian is 
negative for N = 10, 100 and 𝛿 = 1, which indicate  𝑺(𝑓, 𝑁) <
0 everywhere, provided 𝛽 < 𝛿 . Figure. 1 shows that Schwarzian 

is positive everywhere since its graph has no trough. So, we 
conclude that the weed proliferation may be controlled or 
eradicated if the control is targeted at the recruitment factor. 
 
Conclusion 
The steady-state solutions of the control model equation (2) for 
single weed species density was meticulously analysed for local 
and global stabilities. The analyses show that the model is locally 
asymptotically stable and is globally stable, which is as a result of 
the introduction of a control parameter. Also, based on the results 
of the analysis in this paper, weed proliferation may be controlled 
if the control strategy is targeted at the recruitment factors.  
Base on the outcome of the analyses, it is therefore 
recommended that weeds scientists’ and farmers’ efforts on weed 
management should be targeted at the recruitment stage rather 
than the usual practice of controlling mature weed through the 
application of herbicides.  On the other hand, application of 
effective control measure to eradicate the weeds species would 
improve crop yield at its optimum capacity for sustainable food 
production. 
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