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ABSTRACT  
The study uses the idea of logistic function to illustrate the presence 
of chaos as the cause of the absence of periodic formation. The 
logistic function is used in demonstrating, proving, and explaining 
Definition 6 and Theorem 1 through examples, tables, and 
figures. A system in recurrent behavior is describable when it is 
stable. However, chaotic behavior is seen when the system moves 
beyond periodic making it difficult to predict or describe the nature 
of the system. The WolframAlpha computational knowledge engine 
was used in obtaining the tables and the figures for the study. The 
study shows that when the parameter of the logistic function is at 
exactly 4 there is an uncorrelated behavior of the system indicating 
a new regime called chaos. Finally, the study shows that after 
successive iterations of the system there is no recurrent formation 
which is due to the system showing un-periodic, unstable, and 
uncorrelated. 
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INTRODUCTION 
As discussed by Nguyen et al, (1989) the dynamical system at any 
given time has a state that is a set of real numbers, a vector where 
a point is used to represent this state space. Changes in the 
numbers lead to a change in the state of the system. In dynamical 
system, the rule that describes the future from the current state is 
a fixed rule. This fixed rule is also called a cascade (Brown, 2007). 
This system is a mathematical formalization for any fixed rule which 
depends on time to describe the dependence of the position of a 
point in some state space. The fixed rule is deterministic in nature 
that is for a current state given a time interval, only one future state 
follows. Therefore the study of how systems change or evolve 
through time is termed as the dynamical system. The study of 
differential or difference equations explains dynamical systems. 
This process of time – evolution may be either non – linear or linear 
equation which gives us the notion dynamical system. 
 
To Boeing (2016), the study of chaos theory/system is a type of 
dynamical system which is nonlinear. Chaos as a branch of 
mathematics in nonlinear dynamical system is that when the initial 
conditions are or is sensitive dependence. In the chaotic system, 
the deterministic system produces unpredictable behavior, fractal 
and divergent over some time as a result of sensitivity 
Studies done by great scientists in all the areas of mathematics 
have shown that when the behavior of a system becomes 
unpredictable and uncorrelated the system is said to be in chaos.  
In most situations, the future behavior of the system is chaotic when 
there is a sensitive condition through the initial condition.   
The state of recurrence as a system is always predictable and 

regular whether it’s being stationary or periodic evolutions. The 
ends of these evolutions bring in a different evolution that is not 
regular and predictable, hence chaos (Henk & Floris, 2009). 
 
PRELIMINARY DEFINITIONS 
 
Definition 1: let (𝑋, 𝑇)be a topological space, then a function 
𝑇: 𝑋 ⟶ 𝑋 is said to be chaos if; 

a. The set of periodic points of 𝑇 is dense in 𝑋  

b. ∀ 𝑈, 𝑉 open in 𝑋, ∃ 𝑥 ∈ 𝑉 and 𝑛 ∈ 𝑍+ such that 𝑇𝑛(𝑥) ∈ 𝑉  

 
Definition 2:  Let 𝑇 be a rule/map and 𝑥0 be an initial condition. 

The forward limit set of the orbit {𝑇𝑛(𝑥0)} is the set; 𝜔(𝑥0) =
{𝑥: ∀𝑁 𝑎𝑛𝑑 𝜀, ∃𝑛 > 𝑁 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 |𝑇𝑛(𝑥0) − 𝑥| <
𝜀}(Alligood et al, 1996) 
 
NOTE: It is also called the 𝜔 − 𝑙𝑖𝑚𝑖𝑡 set of the orbit. If 𝜔(𝑥1) ∈
𝜔(𝑥0), where 𝑥1 is also another initial condition and 𝜔(𝑥0) is a 

forward limit set of some orbit, then the orbit {𝑇𝑛(𝑥1)} is attracted 
to 𝜔(𝑥0). The fixed points are limit sets, since 𝑥0 = 𝜔(𝑥0), 
likewise, the same rule holds for periodic orbits (Block & Franke, 
1984) 
 
Definition 3: Let {𝑇𝑛(𝑥0)} be a chaotic orbit, the 𝜔(𝑥0) is called 
a chaotic set, if 𝑥0 ∈ 𝜔(𝑥0). The basin of attraction of the attractor 

is the set of the initial condition. A chaotic set that is also an 
attractor is called a chaotic attractor. 
 
Definition 4: Sensitive Dependence on Initial Condition  
The idea behind sensitivity to initial condition is that the initial 
condition of any system with a small uncertainty grows 
exponentially with time which turns out to be large enough and 
changes the core knowledge of the condition/state of the system 
(layek, 2015). This makes it difficult to predict the future behavior 
of the system. 
Let 𝑇: 𝑅 ⟶ 𝑅, that is 𝑇 be a map on 𝑅 itself. A point 𝑥0 has 

sensitive dependence on the initial condition, if ∃𝑑 > 0 such that 

𝜀 > 0 and 𝑥 satisfying |𝑥 − 𝑥0| < 𝑑 ∀ 𝑛 ≥ 0 such that 
|𝑇𝑛(𝑥) − 𝑇𝑛(𝑥0)| ≥ 𝜀. The point 𝑥0 is called a sensitive point. 

 
NOTE: when two orbits are not close to each other that is they 
move away eventually from the distance 𝑑 for some large 𝑛, then 

𝑥 is sensitive. 

 
Definition 5: ‘Chaos’ in Devaney sense 
Devaney was the first to come out with a definition of deterministic 
chaos in his textbook “an introduction to chaotic dynamical 
system”. His definition was in two strands in dynamical idea in 
terms of chaos. (Devaney, 2003) 
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1. Regularity of element as provided in dynamics is a dense set 
of periodic orbits which simple 

2. Irregularity of elements of topological transitivity are 
complicated dynamics  

A function 𝐹 is said to be Devaney Chaotic on Ƭ  defined as; a map 

𝐹: Ƭ → Ƭ, Ƭ ⊆ 𝑅 if;  

i. 𝐹 is topologically transitive 
j. The periodic points are dense in Ƭ 

 
RESULTS AND DISCUSSION 
 
 Major Definition and Theorem 
 
Definition 6:  If a compact topological dynamical system is of the 
form(𝑿, 𝑻). Then 𝒙 ∈ 𝑿 is a periodic recurrent point but 

transitioned to chaos if 𝑻 is continuous such that; 

 ⋃ ≔ {𝒏 ∈ 𝑹: 𝑻𝒏(𝑼) ≠ ∅  𝑎𝑛𝑑  𝑻𝒏(𝒙) ≠ 𝒙} 

Where 𝑼 is the neighborhood of 𝒙 ∈ 𝑿, 𝒏 = 𝟏, 𝟐, …  
 
Theorem 1: A chaotic system is aperiodic if a period-n recurrent 
point is absent. That is, if (𝑿, 𝑻) is a topological dynamical system, 

𝑻 is continuous and compact then if there is no attracting fixed 

point and periodic behavior (which also means non-existence of 
recurrent), the system is aperiodic. 
 
Logistic Map or Function: 𝑻(𝒙) = 𝒂𝒙(𝟏 − 𝒙)  

Where 𝒂 is the parameter which lies within 0 and 4 inclusive, i.e 

0 ≤ 𝑎 ≤ 4 𝑜𝑟 𝑎 ∈ [0,4] 𝑎𝑛𝑑 𝑥 ∈ [0,1]. 
 
Sensitive Condition: Let 𝑇: 𝑅 ⟶ 𝑅, that is 𝑇 be a map on 𝑅 

itself. A point 𝑥0 has sensitive dependence on the initial condition, 

if ∃𝑑 > 0 such that 𝜀 > 0 and 𝑥 satisfying |𝑥 − 𝑥0| < 𝑑 ∀ 𝑛 ≥
0 such that |𝑇𝑛(𝑥) − 𝑇𝑛(𝑥0)| ≥ 𝜀. The point 𝑥0 is called a 

sensitive point. 
 
Note: The logistic function is sensitive to initial condition, hence the 
outcome of the function depends on the sensitive point. This 
indicates that the initial condition has a significant effect on the 
nature of the function. 
 
FINDINGS AND DISCUSSIONS 
Under this section we demonstrate the chaotic formation using the 
logistic function and the idea of sensitive condition as the absence 
of periodic orbits to explain and also prove Definition 6 and 
Theorem 1 respectively. 
 
Now knowing that the logistic function is sensitive to initial condition 
(Klages, 2008).  
We assume that when the parameter 𝒂of the logistic function is 𝟒, 

there is chaotic behavior. 
 

Example 1: Given 𝑓(𝑋) = 𝛼(𝑋 − 𝑋2) 𝑎𝑛𝑑  𝑎 =
4 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑓(𝑥) = 4(𝑥𝑛 − 𝑥2

𝑛) , at 𝑥0 = 0.5 

 

Table 1. Iteration of (𝑥) = 4(𝑥𝑛 − 𝑥2
𝑛) , at 𝑥0 = 0.50000, 

 

 

 
Figure 1: Graph of f(𝑥) = 4(𝑥𝑛 − 𝑥2

𝑛) , at𝑥0 = 0.50000 

 

 
Figure 2:  Graphical display of the logistic function: f(𝑥) =
4(𝑥𝑛 − 𝑥2

𝑛)  (𝛼 = 4,𝑥0 = 0.50000) showing unstableness 
(chaos) 
 
Table 2: The Unstableness of the Logistic Function at 𝛼 = 4 and 
𝑥0 = 0.50000 

 
The unstableness of the system when 𝛼 = 4 and 𝑥0 =
0.50000 
 
The nature of Table 1, Figure 1 and, Figure 2 make it very difficult 
to describe them. This is as a result of the system becoming 
unstable as it keeps moving toward (approaches) infinity. It 
confirms the idea and the meaning of Definition 6 that irrespective 
of the number of time one iterate the function its orbits are so 
uncorrelated having different trajectories. Hence,  
 ⋃ ≔ {𝒏 ∈ 𝑹: 𝑻𝒏(𝑼) ≠ ∅  𝑎𝑛𝑑  𝑻𝒏(𝒙) ≠ 𝒙} is proved. 
 
Figure 1, Figure 2, and Table 2 give the empirical explanation of 
Theorem 1 that as the system shows no existence of fixed point 
and non-existence of periodic cycle (behavior) hence indicating the 
end of the formation of recurrence thereby showing aperiodic as its 
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effect.  Even though the tables and the graphs above give a clear 
picture of the uniformity equation to be flat and zero, but 
determining its nature will be difficult, Figure 1 show that the 
behavior of the system is chaotic that is uncorrelated and 
unpredictable showing unstableness and aperiodic. 
Clearly, Table 2 shows that after successive iterations of the 
system there is no periodic behavior hence no recurrent formation 
which is due to the system showing un-periodic, unstable, and 
uncorrelated.  
Convinsely, when a system is in a periodic state it prevents the 
formation of chaos, hence the absence of recurrent brings about 
chaos. 
 
Conclusion 
The behavior of a system in periodic – like recurrence changes or 
move to a different behavioral state called chaos when it is 
unpredictable. This behavior of the system as illustrated by the 
tables and figures goes to affirm the existence of chaos which is a 

result of the unstable nature or conditions of 𝟒(𝒙𝒏 − 𝒙𝟐
𝒏) in both 

Figure 2 and Table 2.  Since the logistic function is deterministic 
(in nature) as it evolves over and over, at a parameter 4, the 
outcome of the function appears to have no pattern making it 
difficult or impossible to make any valid prediction about the future 
events. This effect of the logistic function brings to an end the 
behavior of the recurrence formation through the periodic- cycle to 
a new state (chaotic state) which is more unrealistic in describing it 
or making predictions of its outcome. 
 
Finally, at parameter 4, the system transitioned totally without 
showing any forms or types of the periodic-cycle nature as a 
periodic–like recurrence but rather demonstrating aperiodic. 
Therefore, the sensitivity of the function at𝒂 = 4 of the initial 

condition shows chaotic behavior. 
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