
___SCIENCE WORLD JOURNAL VOL 3 (NO3) 2008
 www.sciecnceworldjournal.org

ISSN 1597-6343

Adewumi (SWJ):23-25 Index Sort Algorithm For Positive Integers

SHORT COMMUNICATION

INDEX SORT ALGORITHM FOR POSITIVE INTEGERS

ADEWUMI, S. E

Department of Mathematics
University of Jos, Nigeria
adewumis@gmail.com

Sorting algorithms have been described variously by (Hubbard, 2000;
Lipchutz, 2002). Sorting is required in database application to arrange
items in either ascending or descending order of magnitude. It is
sometimes required to determine the magnitude of a number say the
ages of persons, census data, budgetary figures etc.

In all these cases, sorting may be used to achieve the arrangement in
order of magnitude. The applications of sorting algorithm are
numerous and cannot be exhausted in this paper. An efficient
algorithm will provide better sorting time and easy of implementation.
We described some popular sorting algorithm of interest, the purpose
of which is to provide bases for comparison with our method.

Bubble sort
Suppose we have a list of numbers denoted by a1, a2, …, an an in
memory. Bubble sort algorithm proceeds through a sequence of
iterations, each time moving the next largest item into its correct
position. During each iteration, pair of consecutive elements are
compared in order to move the larger element up. The complexity of
bubble sort is naturally determined by the number of comparison
experienced during each pass, (Lipschtz, 2002). Therefore in the first
pass we have n-1 comparisons, second pass n-2 comparisons and
son on. Thus the complexity of bubble sort is

)()(
2

2
)1(12)2()1()(

2
2

nOnOn

nnnnnf




 

Insertion sort
Suppose we have a list of numbers denoted by a1, a2, …, an in memory. Insertion sort algorithm proceeds through a sequence of scans on the
array A from a1, a2, …, an, inserting each element ak into its proper position. It takes an initial unsorted sequence },,,{ 21 nsssS  and

computes a series of sorted sequences nSSS '
1
'

0
' ,,,  (Preiss, 2000). The complexity for this algorithm is also

)()(
2

2
)1(12)1()(

2
2

nOnOn

nnnnf




 

Selection Sort
Suppose we have an array A denoted by elements a1, a2, …, an in
memory. Selection sort algorithm works by first finding the smallest
element in the list and put it in the first position. Then find in the
second element in the list and put it in the second position and so on.
The complexity of its runningtime is the same as insertion sort
described earlier.

Merge sort
Suppose an array A with n elements a1, a2, …, an in memory. Merge
sort algorithm works by the use of divide-and-conquer algorithm. It
proceeds by taking pair of elements, sort them and merge it with
another sorted pair and sorting this pair. After some pass K, the array
will be partitioned into sorted subarrays where each subarray, except
possibly the last, will contain exactly 2k elements. Therefore the
algorithm will require at most (worse-case) log n passes to sort an n-
element array A.

THE APPROACH
Suppose we have some elements denoted by a1, a2, …, an in memory.
This new algorithm works by storing these elements in another array
say A, with each integer stored as their index. With this algorithm, an
integer number say 10 will be stored in position 10 of the array, a
number say 3 will be in position 3 of the array and so on. This will
proceed until all the numbers have been fixed in their rightful position
in the array. That is, numbers are merely copied into their index
position. Once this has been completed, the numbers are then
displayed the way they appear in the array; as they have been
naturally sorted in their order of magnitude.

If for example, we have numbers 11, 3, 5, 2, 1, 8 in memory to be
sorted. This algorithm works by declaring an array say A and then
assign each element to their respective index as shown in Table 1.

23

Adewumi (SWJ):23-25 Index Sort Algorithm For Positive Integers

___SCIENCE WORLD JOURNAL VOL 3 (NO3) 2008
 www.sciecnceworldjournal.org

ISSN 1597-6343

TABLE 1. ARRAY A WITH THE ELEMENTS IN THEIR
RESPECTIVE INDEX

A(0)
A(1) 1
A(2) 2
A(3) 3
A(4)
A(5) 5
A(6)
A(7)
A(8) 8
A(10)
A(11) 11

After this storing, we copy out by printing the content and it can be
readily observe that every integer number has been sorted naturally in
the way they appear. If the content of the array above is printed, we
have the following 1, 2, 3, 5, 8, 11 as the result of sorting the data in
the example. This is a fast means of sorting integer numbers. The
only overhead cost we envisaged is in term of memory required for
the array when the numbers to be sorted is large. We are also aware
that memory module gets cheaper by the day, so this may not be a
major challenge as such. The index sort algorithm is further described
below.

The Index Sort Algorithm
Elements in memory are stored as the index for the position of each
number. Assuming the elements in memory are in array a[n], we store
this elements into another array b[n] by assigning each element a[i] to
variable say k, that is, k=a[i], i starting from 0, 1, …, n .

Write each element into their respective position in array B, that is b[k]
= k.

Traverse array B and copy out the data leaving out indexes where the
content is zero.

Specifically, the following program segment will sort any unsorted
positive integer numbers in array A into array B:

for (j=0;j<=m;++j)
{

k=a[j];
b[k]=k;

}

A complete c++ program has been developed and tested based on
this algorithm and it has performed successfully well.

The c++ pseudo-code for achieving this will be:

#include <iostream>
void indexsort(int [])
int main()
{
int x, int a[];

cout <<”Enter a positive integer as the length of data to be sorted: “;
cin >> x;
cout << “Enter “ << x << “numbers you wish to sort” << endl;
for (int i=1; i<=x; i++)
{
int n;
cout << “Now enter the numbers one after the other: “ cin>> n;
if (n==0)
a[n-1] = 1;
else
a[n-1] = n;
}
for (int i=1; i<=x; i++)
{
if (a[i-1] = 1)
cout << 1;
else if (a[i-1] > 0)
cout << a[i-1];
}
}

Algorithm analysis for this method
The main segment of the program that does the storing and copying is
shown below while the program analysis follows:

1. for (j=0;j<=m;++j)
2. {
3. k=a[j];
4. b[k]=k;
5 }

 If we take each statement line by line, we obtain the following in
Table 2.

TABLE 2. ALGORITHM ANALYSIS OF THE SCHEME

Statement Detailed running time Simple
analysis

1a tfetch + tstore 2

1b (2tfetch+t<) x (n+1) 3(n+1)

1c (2tfetch + t+ + tstore) x n 4n

3 3tfetch + t[.] + tstore 5

4 tfetch + tstore 2
 (4tfetch + t+ + t< +tstore) x n

+7tfetch + t+ + t< +3tstore
7n + 12

From the simple program analysis above, we have 7n+12 which
shows that the running time complexity is of order O(n), that is, it is
linear.

CONCLUSION
We have been able to devise a new sort algorithm and have been
able show that the complexity of this algorithm is O(n). This method
will provide the efficiency required for sorting data in linear time.

24

Adewumi (SWJ):23-25 Index Sort Algorithm For Positive Integers

___SCIENCE WORLD JOURNAL VOL 3 (NO3) 2008
 www.sciecnceworldjournal.org

ISSN 1597-6343

REFERENCES
Hubbard J. R. (2000). Schaum’s Outlines of Programming with C++.
McGraw-Hill Publishing Company

Lischutz, S. (2002). Schaum’s Outlines of Theory and Problems of
Data Structures. Tata McGraw-Hill Publishing Company Limited.

Preiss B.R. (2000). Data Structure and Algorithm With Object-
Oriented Design Patterns in C++. John Wiley & Sons Inc.,

25

