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ABSTRACT 
Gravity measurements at stations in northwestern Nigeria were 
assumed to be random variables. Gravity data collected was used to 
illustrate the gravity network adjustment theories. Residuals of the 
network were inspected to detect gross errors by standardizing the 
residuals. Computed standard deviation for unit weight was used to 
determine the standard confidence interval which is one of the most 
important aspects of the least squares adjustment used for control 
surveys specifications, and for classifying surveys. The adjustment was 
carried out using the least-squares option to obtain estimated values for 
gravity for all the stations together with their accuracy estimates.  
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INTRODUCTION 
Statistics is the scientific method of collecting, arranging, 
summarizing, presenting, analyzing and drawing valid 
conclusions from data. The method of least squares is the 
standard method used to obtain unique values for physical 
parameters from redundant measurements of those parameters. 
A least-square adjustment of survey observations is an 
important step in a gravimetric survey; properly used, it helps 
isolate blunders in the observations being adjusted and gives 
the accuracy and reliability of the gravity values being 
determined. The primary components of a least-square 
adjustment are the survey observations (in this case gravity 
differences) and the uncertainties associated. Due to 
measurement limitations of the surveying instruments and the 
influence of the operators, these observations include some 
level of error. These errors cause loops not to close perfectly 
and result in different computed values for the same station in 
the network (Pennington 1965). 
 
The ultimate goal of a least-square adjustment is to produce a 
set of observations where all loops close perfectly and only one 
value can be computed for any point in the network. In order to 
accomplish this task, the observations going into the adjustment 
must be changed slightly, i.e. adjusted.. A successful adjustment 
is one where observations are changed as little as possible, and 
the amount of adjustment to any observation is within expected 
levels. Unfortunately there are a number of obstacles that can 
stand in the way of producing a successful adjustment. Primary 
on this list are blunders, errors in the observation due to 
equipment malfunction or operator error (incorrectly measured 
instrument height, insufficient data, wrong station identifier, etc.). 
Statistically based tools exist to assist in overcoming these 

obstacles, both before and during the adjustment; as a result, it 
is very important that uncertainties (error estimates) are realistic. 
At times, these uncertainties may be little optimistic (too small) 
or pessimistic (too large). Methods exist to help identify when 
uncertainties are unrealistic and to help rectify this situation. 
Also, adjustment analysis tools cannot function properly without 
redundancy in the observations.  
 
Theory 
Consider the system of linear equations f (X, L) = 0, or in, matrix 
form: 

AX = L                          (1) 
 

where X is the unknown vector, L is the constant vector, and A 
is the coefficient matrix or design matrix. Let’s assume that the 
elements of L are the results of physical measurements, L is 
called the observation vector. 
 
In the case where there are no redundant equations (minimum 
number of measurements), A is square and non-singular, and 
therefore has an inverse. The unique solution is then given by:  
 

X = A-1L, where A-1 is the inverse of A. 
 
When there are redundant equations, the system is over 
determined: A is not square, but ATA is (Mikkhail & Ackerman 
2000) and we have: 
 

X = (ATA)-1ATL 
 
This is so if and only if the system is consistent. But if there are 
redundant measurements, they will be inconsistent because 
physical measurements are never perfect.  

 
No unique solution will exist, and all we are able to do is make a 
unique estimate of the solution. The most commonly used 
criterion for the estimate to be unique is the least squares 
criterion; that the sum of the squares of the inconsistencies be 
minimum. 

 
Using statistics, we are also usually able to establish the degree 
of reliability of the solution, and thus define the most probable 
unique solution. To cancel the inconsistencies, we add a vector 
to equation (1), which becomes: 
 

AX – L = V  (2) 

 
where V is usually called the residual vector (observation 
errors). The elements of V are not known and must be solved 
for. So we have to allow some of or all the elements of L change 
slightly while solving for X, or regard L as an appropriate value 

of some other value 
∧
L  which yields the unique solution 

∧
X . 

Now the least squares criterion states that the best estimate
∧
X  

for X is the estimate, which will minimize the sum of the squares  
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TABLE 1: THE GRAVITY NETWORK OBSERVATION USED. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
∆gAB ∆gBA ∆gBC ∆gCD ∆gDE ∆gEF ∆gFC  ∆gCF ∆gFB ∆gFA ∆gFG ∆gGF   

Gravity Difference 
(mGals) 

 
0.143 

 
-0.143 

 
2..370 

 
1.437 

 
-0.897 

 
-0.414 

 
0.880 

 
-0.779 

 
-0..591 

 
-0.635 

 
1.206 

 
-1.201 

Time between 
stations (hrs) 

 
2 

 
2 

 
3 

 
4 

 
2 

 
3 

 
4 

 
4 

 
3 

 
5 

 
6 

 
6 

 

of the residuals (discrepancies between observations and 

estimated values assigned to each observable), that is VV T ˆˆ  is 

minimum. 
 

Often the physical measurements which make up the elements of L 
do not all have the same precision (they have been made using 
different instruments by different people, under different conditions 
etc.). This fact should be reflected in our least squares estimation 
process, so we assign to each measurement a known weight and 
call P the matrix whose elements are these weights, the weight 

matrix. We modify the criterion, which becomes VPV T ˆˆ  is 

minimum. 
 

The resulting estimate is called the weighted least squares 
estimate, and is given by 

∧
X = (ATPA)-1ATPL                    (3) 
 

where ATPA is the normal equation matrix, and must not be 
singular for the estimator to be unique. 

It can be shown that the least squares unbiased estimator 

2

0

∧
σ  of 

the variance factor σ 2

0
 

is: 
un

VPV T

−
=

∧∧
∧ 2

0σ   where ∑
−= 12

0 L
P σ , and that the 

least squares unbiased estimator of the covariance matrix of X is:    

( ) 12
0

−
∧∧

=Σ ∧ PAAT
X σ               (4) 

 

Data collection and reduction: Gravity stations were occupied in 
February 2003 using LCR G446 gravimeter. The stations were tied 
to the control stations, which are part of the Nigerian gravity 
network, which is in turn tied to the IGS1971 (Osazuwa 1985). The 
measuring technique was such as to ensure the independence of 
the ties inside a loop by linking each station with its direct 
neighbours in a sequence. This procedure allows sometimes 
stabilization of instrument before starting precise measurements. 
 

Gravity data reduction was performed using various steps (Aku 
2005). Tidal, drift latitude, elevation (free air and Bouguer) 
corrections were carried out on the data. Tidal correction was 
computed and applied using regional data parameters as they 
can differ from a constant tidal factor by more than 10% (Poitevin 
& Ducarme 1980). For each loop and at each station, the mean 
value was converted to physical units using the instrument’s 
constant value and corrected of the tidal effects. Instrument drift 
was calculated for different possible closures of the loop to 
compute the gravity difference for each tie. Terrain corrections 
were not applied since the area is relatively flat. The Bouguer 
anomaly values were reduced to the datum of the mean sea level 
using a uniform crustal density of 2.67 g/cm3. 

 
Computation of adjusted observations and residuals:  
Gravity models attempt to describe in detail the variations in the 
gravity field. The importance of this effort is related to the idea of 
leveling, thus the gravity differences can be adjusted as a 
leveling network. This is because the summation of gravity 
differences around a closed loop theoretically goes to zero, and 
this condition can then be used as the basis for the adjustment. 

 
The stations with absolute gravity determination provide the 
anchoring point (fixed points) of the network, while the relative 
measurements provide the ties between the points. When the 
absolute and relative observations are made and assessed for 
accuracy, an adjustment can be carried out using a least-square 
adjustment technique. The adjustment results in the estimated 
values of gravity for all stations, together with their accuracy 
estimates. The adjustment procedure is practically identical with 
that of geodetic leveling (Poitevin & Ducarme 1980). 

 
The gravity at point A is known and is constant (980100.000 
mGal) (Osazuwa 1985) whereas gravity at B, C, D, E, F, and G 
are to be determined. 

 
From the observation data, we have a number of observations n 
= 12 and the number of unknowns u = 6. Therefore we have 6 

redundant observations (n – u) and 6 degrees of freedom. 
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The observations are considered uncorrelated with variances proportional to the corresponding travel time 
between stations. Thus the weight matrix is given as the inverse of the variance-covariance matrix of the 
observations, that is: P = diag (1/2, 1/2, 1/3, 1/4, 1/4, 1/3, 1/4, 1/4, 1/3, 1/5, 1/6, 1/6)  
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where gA  has a constant value and the weight of each observation is inversely 
proportional to the length of travel of the line. Putting equation (a) in matrix form, we 
have the following: 

 

The 12 independent equations that can be generated are: 
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The normal equations are N
∧
X  = U, yielding the solution 

∧
X  = N-1U 

Spreadsheet and a Fortran program was used to compute
∧
X  and obtain the estimates for the gravity of points 

B, C, D, E, F, and G. We find:  

 

887.102

684.101

083.103

971.103

515.102

133.100

=
∧
X

  in mGals               and            

003.0

003.0

049.0
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052.0
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009.0
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010.0

010.0

−
−
−

−
−

−

=−=
∧∧

LXAV

       in mGals 

 

Note: (980000 mGals to be added to 
∧
X ) 

The adjusted observations are 
∧∧

+= VLL  

 

Even after one has acquired some experience in judging where 
weakness lies in survey configurations, one should inspect 
residuals of the adjusted network to detect gross errors because 
confidence regions do not reveal small pockets of distortion. If 
blunders are identified, they must be removed from the data set, 
and the adjustment must be rerun. Bear in mind that large residuals 
do not always indicate a blunder since least-squares adjustment 
tends to distribute the effects throughout the entire network. 

 
In order to verify if the observations are normally distributed, their 

residuals obtained from the adjustment may be subjected to the χ2 
test of goodness of fit. The residuals have to be standardized since 
standardized random variable is normally distributed with a mean 
zero and variance 1. The standardization was carried out using the 
sample mean and sample variance in place of the population mean 
and variance. The standardized residuals take into account the fact 
that residuals generated by random errors are somewhat 
predictable statistically. This test allows verifying the normality of 
the residuals obtained after the adjustment. 

 
The variance of unit weight monitor the relationship between the 
uncertainties assigned to the observations and the magnitude of the 
change required to each observation (residuals) in the adjustment. 
Changes to the observations should not be significantly greater 
than the associated uncertainties. 

 
Since gravity accuracy at each point is related to the reference 
points that are treated as fixed (errorless) in the process of the 
network adjustment, the term absolute gravity confidence interval is 
applied. Variances and covariances of the analyzed network are a 
basis for the calculations of gravity errors. They allow the 
calculation of the standard deviations of gravity values (or 
differences in gravity values). 

 

Good estimates of the standard deviations of the measurements 
are usually available, that’s why a-prior standard deviation of unit 
weight is used to determine the standard confidence interval. 
However, if good estimates of the measurements are not available, 
because of inexperience or malfunctioning equipment, the standard 
deviation of unit weight computed the least-squares adjustment is 
used, provided there is sufficient redundancy to give a reasonable 
value. 
 

For precise gravity surveys, it is both logical and prudent to perform 
the weighted adjustment rather than the equal weight adjustment. 
Often results of physical measurements do not have the same 
precision since they have been made using different instruments by 
different persons, under different conditions. This fact is reflected in 
the least squares estimation process. The parametric method of 
least squares remains a reliable tool that greatly assists in 
overcoming obstacles that can stand on the way of producing a 
successful adjustment.  
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