
Science World Journal Vol 13(No 4) 2018 
www.scienceworldjournal.org 
ISSN 1597-6343 
Published by Faculty of Science, Kaduna State University 

 

Computation of the Total Scattering Cross Sections For the Halogens 

 

COMPUTATION OF THE TOTAL SCATTERING CROSS SECTIONS 
FOR THE HALOGENS 

 
Abdu, S. G. 
 
Department Physics, Kaduna State University, Kaduna-Nigeria 
 
Author’s Email Address: sgabdul@kasu.edu.ng  
 
 
ABSTRACT  
Calculated Total Cross-Sections (TCS) of elastic electron-atom 
scattering for F, Cl, Br, I and At are presented. The computed 
TCS were calculated using Born, Eikonal and the Optical 
Theorem approximation methods with the Lenz-Jensen potential, 
at electron incident energies between 1to1000 eV.  Results 
obtained are in good agreement with experimental TCS data.  
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INTRODUCTION 
In scattering theory, the Total Cross-Section (TCS) is a measure 
of the probability that an interaction occurs; the larger the cross 
section, the greater the probability that an interaction will take 
place when a particle is incident on a target (Anchaver, 2003). 
 
Elastic electron-atom scattering takes place if the final state of an 
atom after the interaction coincides with the initial one (Winitzki, 
2004). Total and differential cross-sections for such a process can 
be calculated in various approximations — Born (Merzbacher, 
1970)), Eikonal (Innanen, 2010; Shajesh, 2010), optical theorem 
(Lokajicek & Kundrat, 2009; Ronniger, 2006), partial wave method 
(Cox & Bonham, 1967), etc. In this work, the total cross-sections 
of the halogens Flourine (F), Chlorine (I), Bromine (Br), Iodine (I) 
and Astatine (At) (Halka & Nordstrom, 2010) were computed 
using the three approximation methods named above. 
 
MATERIALS AND METHODS 
We used the FORTRAN code program developed by Koonin & 
Meredith (1989) which takes the relativistic differential cross-
section as a sum of squared modules of the real and imaginary 
scattering amplitudes. The amplitudes can be calculated through 
the phase shifts of spherical waves, which are obtained by 
integration of equations for radial wave functions. In these 
computations the analytical approximation for the atomic 
electrostatic potential given by Lenz and Jensen, called the Lenz-
Jensen potential (Blister & Hautala, 1978), based on the Thomas-
Fermi model, is used. 
 
Scattering Theory 
For particles of mass m and energy  

 𝐸 =
ℏ2𝑘2

2𝑚
> 0     1.0 

 scattering from a central potential, V(r) is described by a wave 
function, ψ(r) that satisfies the Schrodinger Wave Equation (SWE) 
 

 −
ℏ2

2𝑚
∇2𝜓 + 𝑉𝜓 = 𝐸𝜓  2.0  

with the boundary condition at large distance 

 𝜓𝑟→∞ → 𝑒𝑖𝑘𝑧 + 𝑓(𝜃)
𝑒𝑖𝑘𝑟

𝑟
   3.0 

Equation (3.0) holds for a beam of electrons incident along z-axis, 
and the scattering angle, 𝜃 is the angle between r and �̂� while 𝑓 

is the complex scattering amplitude, which is the basic function 
we seek to determine (Babaji, Abdu & Taura, 2012). The 
differential cross-section is given by: 

 
𝑑𝜎

𝑑Ω
= |𝑓(𝜃)|2   4.0 

 
The total cross-section is  
 

𝜎 = ∫ 𝑑Ω
dσ

dΩ
= 2π ∫ dθsinθ|f(θ)|2π

0
  5.0 

  
𝑓 is a function of both 𝐸 and 𝜃 (Koonin & Meredith, 1989). 
 
Approximation Methods 
Approximations play a very important role in our understanding of 
processes that cannot be solved exactly. The calculation of 
scattering cross sections is one of the most important uses of 
Fermi’s Golden Rule (Wacker, 2011). Fermi’s rule involves only 
one matrix element of the interaction which makes it a first order 
approximation to the exact result. This approximation suggests an 
approximation to the complex scattering amplitude.  
The Born approximation involves an approximation to the 
complex scattering amplitude (Merzbacher, 1970). It has been 
extensively used to study low energy as well as high energy 
scattering processes.  The Eikonal approximation is a technique 
for estimating the high energy behaviour of a forward scattering 
amplitude (Innanen, 2010). It was originally developed for 
potential scattering in quantum mechanics, where one 
approximates the classical trajectory corresponding to forward 
scattering by a straight line and uses a WKB approximation for 
the wavefunction (Sakuri, 1985).  The optical theorem relates the 
forward scattering amplitude to the cross section (Lokajicek & 
Kundrat, 2009). 
 
Partial Wave Method 
The method of partial wave expansion is a special trick to simplify 
the calculation of the scattering amplitude, 𝑓 (Newton, 1982). The 

standard partial wave decomposition of the scattering wave 
function 𝜓 is 

𝜓(𝑟) = ∑ (2𝑙 + 1)𝑖𝑙𝑒𝑖𝜎 𝑅𝑙(𝑟)

𝑘𝑟
𝑃𝑙(𝑐𝑜𝑠𝜃)∞

𝑙=0   6.0 

  
When equation (2.6) is substituted into the SWE (2.0) the radial 
wave functions, 𝑅𝑙 are found to satisfy the radial differential 

equations:  

[−
ℏ2

2𝑚

𝑑2

𝑑𝑟2 + 𝑉(𝑟) +
𝑙(𝑙+1)ℏ2

2𝑚𝑟2 − 𝐸] 𝑅𝑙(𝑟) = 0 7.0 
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This is the same equation as that satisfied by a bound state wave 
function but the boundary conditions are different. In particular, 𝑅 
vanishes at the origin, but it has the large-r asymptotic behavior 
  
𝑅𝑙 → 𝑘𝑟[𝑐𝑜𝑠𝛿𝑙𝑗𝑙(𝑘𝑟) − 𝑠𝑖𝑛𝛿𝑙𝑛𝑙(𝑘𝑟)]  8.0 
 
Where 𝑗𝑙 and 𝑛𝑙 are the regular and irregular spherical Bessel 
functions of order 𝑙.  

The scattering amplitude is related to the phase shifts 𝛿𝑙 by [9]: 

 

𝑓(𝜃) =
1

𝑘
∑ (2𝑙 + 1)𝑒𝑖𝛿𝑙𝑠𝑖𝑛𝛿𝑙𝑃𝑙(𝑐𝑜𝑠𝜃)∞

𝑙=0  9.0  

 
From equations (5.0) and (9.0) the total cross-section is given by  
 

 𝜎 =
4𝜋

𝑘2
∑ (2𝑙 + 1)𝑠𝑖𝑛2𝛿𝑙

∞
𝑙=0    10.0 

 
 Although the sums in equations (9.0) and (10.0) extend over all 𝑙, 

they are in practice limited to only a finite number of partial waves. 
This is because for large 𝑙, the repulsive centrifugal potential in 

equation (7.0) is effective in keeping the particle outside the range 
of the potential and so the phase shift is very small.  
If the potential is negligible beyond a radius 𝑟𝑚𝑎𝑥, an estimate of 

the highest partial wave that is important is had by setting the 
turning point at this radius: 

  
𝑙𝑚𝑎𝑥(𝑙𝑚𝑎𝑥+1)ℏ2

2𝑚𝑟𝑚𝑎𝑥
2 = 𝐸    11.0  

 
 ⇒ 𝑙𝑚𝑎𝑥 ≈ 𝑘𝑟𝑚𝑎𝑥   12.0 

  
This estimate is usually slightly low since the penetration of the 
centrifugal barrier leads to non-vanishing phase shifts in partial 
waves somewhat higher than this (Koonin & Meredith, 1989). 
 
The Phase shifts 
To find the phase shift in a given partial wave, we must solve the 
radial equation (7.0). The equation is linear, so that the boundary 
condition at large  
𝑟 can be satisfied simply by appropriately normalizing the 

solution. 
If we put 𝑅𝑙(𝑟 = 0) = 0 and take the value at the next lattice 

point, 𝑅𝑙(𝑟 = ℎ), to be any convenient small number we then 
use 

  𝑓" ≈
𝑓1−2𝑓0+𝑓−1

ℎ2    13.0 

 

for 𝑅𝑙
"(ℎ), along with the known values 𝑅𝑙(0), 𝑅𝑙(ℎ), and 𝑘(ℎ) 

to find 𝑅𝑙(2ℎ).  

Now we can integrate outward in 𝑟 to a radius 𝑟(1) > 𝑟𝑚𝑎𝑥. 

Here, 𝑉 vanishes and 𝑅 must be a linear combination of the free 

solutions, 𝑘𝑟𝑗𝑙(𝑘𝑟) and 𝑘𝑟𝑛𝑙(𝑘𝑟): 

 

 𝑅𝑙
(1)

= 𝐴𝑘𝑟(1)[𝑐𝑜𝑠𝛿𝑙𝑗𝑙(𝑘𝑟(1)) − 𝑠𝑖𝑛𝛿𝑙𝑛𝑙(𝑘𝑟(1))]     14.0 

 
 Although the constant, 𝐴 above, depends on the value chosen 

for 𝑅(𝑟 = ℎ), it is largely irrelevant for our purposes; however, it 

must be kept small enough so that overflows are avoided. Now 

we continue integrating to a larger radius 𝑟(2) > 𝑟(1): 
 

𝑅𝑙
(2)

= 𝐴𝑘𝑟(2)[𝑐𝑜𝑠𝛿𝑙𝑗𝑙(𝑘𝑟(2)) − 𝑠𝑖𝑛𝛿𝑙𝑛𝑙(𝑘𝑟(2))]      15.0  

Equations (14.0) and (15.0) can then be solved for 𝛿𝑙 to obtain 

 𝑡𝑎𝑛𝛿𝑙 =
𝐺𝑗𝑙

(1)
−𝑗𝑙

(2)

𝐺𝑛𝑙
(1)

−𝑛𝑙
(2); 𝐺 =

𝑟(1)𝑅𝑙
(2)

𝑟(2)𝑅𝑙
(1) 16.0 

where 𝑗𝑙
(1)

= 𝑗𝑙(𝑘𝑟(1) etc. Equation (16.0) determines 𝛿𝑙 only 

within a multiple of 𝜋 but this does not affect the physical 

observables [see equations (9.0) and (10.0)]. The correct multiple 
of 𝜋’s at a given energy can be determined by comparing the 

number of nodes in 𝑅 and in the free solution, 𝑘𝑟𝑗𝑙 which occur 

for 𝑟 < 𝑟𝑚𝑎𝑥. The phase shift in each partial wave vanishes at 

high energies and approaches 𝑁𝑙𝜋 at zero energy, where 𝑁𝑙 is 

the number of bound states in the potential in the 𝑙’th partial wave 

(Koonin & Meredith, 1989). 
 
The Lenz-Jensen Potential 
One practical application of the theory discussed above is the 
calculation of the scattering of electrons from neutral atoms. In 
general this is a complicated multi-channel scattering problem 
since there can be reactions leading to final states in which the 
atom is excited. However, as the reaction probabilities are small 
in comparison to elastic scattering, for many purposes the 
problem can be modeled by the scattering of an electron from a 
central potential (Koonin & Meredith, 1989). This potential 
represents the combined influence of the attraction of the central 
nuclear charge (Z) and the screening of this attraction by the Z 
atomic electrons. For a neutral target atom, the potential vanishes 

at large distances faster than 𝑟−1. A very accurate approximation 
to this potential can be had by solving for the self-consistent 
Hartree-Fock potential of the neutral atom. However, a much 
simpler estimate can be obtained using an approximation to the 
Thomas-Fermi model of the atom given by Lenz and Jensen 
(Blister & Hautala, 1978) 

 𝑉 = −
𝑍𝑒2

𝑟
𝑒−𝑥(1 + 𝑥 + 𝑏2𝑥2 + 𝑏3𝑥3 + 𝑏4𝑥4);             17.0 

 with  

𝑒2 = 14.409; 𝑏2 = 0.3344; 𝑏3 = 0.0485; 𝑏4 = 2.647 ×
10−3;                    18.0  
and  

𝑥 = 4.5397𝑍
1

6𝑟
1

2                                 19.0 
 
This potential is singular at the origin. If the potential is 
regularized by taking it to be a constant within some small radius 
𝑟𝑚𝑖𝑛 (say the radius of the atom’s 1s shell), then the calculated 

cross-section will be unaffected except at momentum transfers 
large enough so that 𝑞𝑟𝑚𝑖𝑛 ≫ 1.  

The incident particle is assumed to have the mass of the electron, 
and, as is appropriate for atomic systems, all lengths are 

measured in angstrom (Å)  
and all energies in electronvolt (eV). The potential is assumed to 

vanish beyond 2Å. Furthermore, the 𝑟−1 singularity in the 
potential is cutoff inside the radius of the 1s shell of the target 
atom. 
 
Research Methodology 
A FORTRAN program developed by Koonin & Meredith (1989) 
was the main program used for all the computations. The program 
is made up of four categories of files: common utility programs, 
physics source code, data files and include files. The physics 
source code is the main source code which contains the routine 
for the actual computations. The data files contain data to be read 
into the main program at run-time and have the extension .DAT.  
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The first thing done was the successful installation of the 
FORTRAN codes in the computer. This requires familiarity with 
the computer’s operating system, the FORTRAN compiler, linker, 
editor, and the graphics package to be used in plotting. The 
program runs interactively. It begins with a title page describing 
the physical problem to be investigated and the output that will be 
produced. Next, the menu is displayed, giving the choice of 
entering parameter values, examining parameter values, running 
the program, or terminating the program. When the calculation is 
finished, all values are zeroed (except default parameters), and 
the main menu is re-displayed, giving us the opportunity to redo 
the calculation with a new set of parameters or to end execution. 
 
RESULTS AND DISCUSSION 
Results were generated for several electron incident energies as 
presented in tables 1-3 below: 
 
Table 1: Computed Total Cross-Sections for Elastic Electron- 
Atom Scattering for F, Cl, Br, I and At Using the Born 
Approximation Method with the Lenz-Jensen Potential. 

 
 
From table 1, using the Born method, the calculated TCS are 
significantly higher than those obtained using the two other 
approximation methods as reported by Babaji et al. (2012). This is 
as a result of the fact that the Born approximation is only valid at 
high electron incident energies. As observed, the calculated TCS 
of all the Halogens (F, Cl, Br, I and At) decrease with increasing 
incident energies from 1 to 1000 eV. Also, the calculated TCS 
increase with increasing atomic number (Z) for all the Halogens. 
 
 
 
 
 

Table 2: Computed Total Cross-Sections for Elastic Electron- 
Atom Scattering for F, Cl, Br, I and At Using the Eikonal 
Approximation Method with the Lenz-Jensen Potential. 

 
 
From table 2, using the Eikonal method, the TCS for F exhibited a 
single maxima 5 eV, then decrease with increasing incident 
energy between 5 to 1000 eV. The TCS for Cl, Br and I exhibited 
a number of minima and maxima between 1 to 100 eV, then 
decrease with increasing incident energy between 100 to 1000 
eV. Those for At exhibited a number of minima and maxima 
between 1 to 400 eV, then decrease with increasing incident 
energy. Here, the calculated TCS increase with increasing atomic 
number (Z) for all the Halogens only for incident energies greater 
than 400 eV. 
 
Table 3: Computed Total Cross-Sections for Elastic Electron- 
Atom Scattering for F, Cl, Br, I and At Using the Optical Theorem 
with the Lenz-Jensen Potential. 
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From table 3, using the Optical theorem method, the calculated 
TCS for F, Cl, and Br decrease with increasing incident energy 
between 1 to 1000 eV, except for Br at 70 eV.  Those for I 
exhibited a number of minima and maxima in the energy range 1 
to 80 eV, then decrease with increasing incident energy between 
80 to 1000 eV.  The TCS for At exhibited a number of minima and 
maxima in the energy range 1 to 400 eV, then decrease with 
increasing incident energy between 400 to 1000 eV. 
 
The calculated TCS using Eikonal and Optical theorem 
approximation methods are in good agreement with the TCS 
calculated by Cox and Bonham (1967). However TCS calculated 
using the Born approximation method are much higher than the 
values for the energy range considered. This is because the Born 
approximation is only valid at high electron incident energies 
(Babaji et al., 2012). 
 
Conclusion 
Computed Total Cross-Sections (TCS) of elastic electron-atom 
scattering for the halogens have been computed using the Born, 
Eikonal and the Optical theorem approximation methods with the 
Lenz-Jensen potential, at incident energies of 1to1000 eV.  
Results obtained using the Eikonal and Optical theorem methods 
are in good agreement with the experimental TCS values. 
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