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ABSTRACT  
In this study, a mathematical analysis is presented for unsteady 
MHD generalized Couette flow of an incompressible and 
electrically conducting fluid in an annulus formed by two concentric 
cylinders of infinite length. The governing equations are obtained 
and solved using Laplace transform and the Riemann sum 
approximation method. The results for various ensued parameters 
on the velocity, skin friction and mass flux have been presented 
graphically and discussed. 
 
Keywords: Laplace transform, Generalised MHD, magnetic field, 
annuli, Riemann-sum approximation. 
 
INTRODUCTION 
Flow formation of an electrically conducting fluid through a circular 
pipe in the presence of a transverse magnetic field is encountered 
in a variety of applications such as Magnetohydrodynamic (MHD) 
generators, pumps, accelerators, and flow meters (Jha and Apere, 
2013). Antimirov and Kolyshkin (1984) studied the unsteady MHD 
flow in an annular channel with radial magnetic field while Takhar 
et.al (1989) examined the stability of MHD Couette flow in a narrow 
gap annulus. The annular geometry is widely employed in the field 
of heat exchangers such as in gas cooled nuclear reactors in which 
the cylindrical fissionable fuel elements are placed axially in vertical 
coolants channel within the graphite moderators and the cooling 
gas is flowing along the channel parallel to the fuel elements (Singh 
et. al, 1997).  
 
Globe (1959) was first to presents an analysis of the fully developed 
laminar MHD flow in an annular channel. Jain and Mehta (1962) 
extended the problem by imposing suction/injection on the walls. 
An exact solution of electrically conducting viscous incompressible 
flow in an annulus with porous walls under an external radial 
magnetic field was obtained by Nandi (1973). 
 
The generalised MHD Couette flow was attempted by Agarwal 
(1965) where he analysed the problem by giving the conditions 
under which the back flow at the stationary wall may be avoided. 
Soudalgekar (1966) discussed the temperature field problem in the 
case of the generalised Couette flow under the action of transverse 
magnetic field and have found out that the rate of heat transfer at 
the stationary plate is affected by the magnetic field. In another 
related investigation, Soudalgekar (1969) considered the effects of 
both electric and magnetic fields on the flow. Esmaeilpour and 
Ganji (2008) studied Generalized Couette Flow by He’s Methods 
and Comparison with the Numerical Solution while Makinde and 
Onyejekwe (2011), presented numerical study of MHD generalized 
Couette flow and heat transfer with variable viscosity and electrical 
conductivity. Chauhan et. al (2012) presented the effect of thermal-

diffusion (Soret) and diffusion-thermo (Dufour) in hydro-magnetic 
generalized couette flow of a binary mixture of gases in presence 
of normal applied magnetic field in porous medium. Hazem, Karem 
and Nabil (2012) studied the effect of porosity on the transient MHD 
generalized Couette flow with heat transfer in presence of heat 
source and uniform suction and injection. Animesh (2014), studied 
generalized magnetohydrodynamic Couette Flow of a binary 
mixture of viscous fluids through a horizontal channel under Soret 
effect. Singh, Joshi, and Srinivasa (2017), studied unsteady MHD 
Generalized Couette Flow in a rotating channel with induced 
magnetic field, hall current and periodically magnetized walls. 
Taiwo and Michael (2018) investigated the combined effect of 
radial magnetic field and viscous dissipation on entropy generation 
in horizontal co-axial cylinders of generalized Couette flow while 
Mollah et. al (2019) investigated numerically the MHD generalized 
Couette flow and heat transfer on Bingham fluid through porous 
parallel plates with ion-slip and Hall current.  
 
Despite the amount of studies that has been carried out on the 
annular geometry under different conditions, little or no work seems 
to have been carried out on the generalised MHD Couette flow in 
an annuli in which the pressure-induced flow is supposed to be 
superimposed on simple shear flow in classical hydrodynamics. It 
is the object of this work therefore, to present a solution for the 
generalised MHD Couette flow in an annulus formed between two 
concentric horizontal cylinders of infinite length when the outer 
cylinder has been set into impulsive motion. 
 
MATERIALS AND METHODS 
 
Mathematical Formulation 
We consider the motion of a viscous, incompressible and 
electrically conducting fluid between two horizontal concentric 
cylinders of infinite length (see Fig. 1). The outer cylinder is 
impulsively started with a uniform velocity along the flow direction, 
while the inner cylinder is kept stationary. A constant pressure 
gradient exists in the flow direction. The fluid flow between the two 
the cylinders in the presence of magnetic field acting perpendicular 
to the flow direction. The 𝑧-axis is assumed to be on the axis of the 

cylinder in the horizontal direction and 𝑟′-axis is on the radial 

direction. We assume that the magnetic Reynolds number is very 
small which correspond to negligible induced magnetic field 
compared to the externally applied field. Furthermore, the uniform 
magnetic field 𝐵 is constant 𝐵 ≡ (0,0, 𝐵0) and is considered as 

the total magnetic field acting on the fluid. At 𝑡′ ≤ 0, the fluid and 

the cylinders are assumed to be at rest. When 𝑡′ > 0 the outer 

cylinder is set into motion with a uniform velocity 𝑈, and the inner 

cylinder remains at rest. Since the cylinders are of infinite length 
and the flow is fully developed, all physical variables are functions 
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of 𝑟′ and 𝑡′ only. It is also assumed that no applied and polarization 

voltage exists. Under these assumptions, the mathematical model 
governing the present physical situation is given as;   
𝜕𝑢′

𝜕𝑡′
= −

1

𝜌

𝜕𝑝

𝜕𝑧
+ 𝜐[

𝜕2𝑢′

𝜕𝑟′2
+

1

𝑟′

𝜕𝑢′

𝜕𝑟′
] −

𝜎𝐵0
2

𝜌
𝑢′ ,       (1) 

 
Where 𝜌 is the density, 𝜐 is the kinematic viscosity and 𝜎 is the 

electrical conductivity. Equation (1) is valid when the magnetic field 
is fixed relative to the fluid. If the magnetic field is fixed relative the 
moving cylinder, can be written as; 
𝜕𝑢′

𝜕𝑡′
= −

1

𝑝

𝜕𝑝

𝜕𝑧
+ 𝜐[

𝜕2𝑢′

𝜕𝑟′2
+

1

𝑟′

𝜕𝑢′

𝜕𝑟′
] −

𝜎𝐵0
2

𝜌
[𝑢′ − 𝐾𝑈𝑡′𝑚

]  , (2) 

 
Equations (1) and (2) can be unified to obtain; 
𝜕𝑢′

𝜕𝑡′ = −
1

𝑝

𝜕𝑝

𝜕𝑧
+ 𝜐[

𝜕2𝑢′

𝜕𝑟′2 +
1

𝑟′

𝜕𝑢′

𝜕𝑟′] −
𝜎𝐵0

2

𝜌
[𝑢′ − 𝐾𝑈]          (3) 

Where 
𝐾

= {
0                               when B0 is fixed relative to the fluid
1         when B0 is fixed relative to the moving cylinder

 

The initial and boundary conditions for the problem are; 
𝑡′ ≤ 0:  𝑢′ = 0  for 0 ≤ 𝑟′ ≤ 𝑏, 

 𝑡′ > 0: {
𝑢′ = 0           𝑎𝑡    𝑟′ = 𝑎 
𝑢′ = 𝑈𝑡′𝑚

   𝑎𝑡    𝑟′ = 𝑏
           (4) 

 
The flow described by equations (3) and (4) is the general 
representation of the velocity for the MHD Couette flow between 
two infinite concentric cylinders of any conducting medium due to 
the motion of the outer cylinder. In order to analyze the flow 
behavior, we have considered the case when 𝑛 = 0, which 

correspond to the impulsive motion. Introducing the following non-
dimensional quantities 

𝑟 =
𝑟′

𝑎
,  𝜆 =

𝑏

𝑎
, 𝑡 =

𝑡′𝜐

𝑎2
,  𝑀2 =

𝜎𝐵0
2𝑎2

𝜌𝜈
, 𝑢 =

𝑢′

𝑈
, 𝑃 =

1

𝜌
(−

𝜕𝑝

𝜕𝑧
)

𝑎2

𝑈𝜈
.

     (5) 
 
Where 𝑎 and 𝑏 are the radii of the inner and outer cylinders 

respectively. 𝜆, is the annulus dimension ratio and is fixed as 3 in 

this paper,  𝑀 is the Hartman number, which is a measure of the 

strength of the applied magnetic field. Eqn. (3) becomes 
𝜕𝑢

𝜕𝑡
=

𝜕2𝑢

𝜕𝑟2 +
1

𝑟

𝜕𝑢

𝜕𝑟
− 𝑀2[(𝑢 − 𝐾)] + 𝑃               (6) 

 
Subject to the following dimensionless initial and boundary 
conditions 
𝑡 ≤ 0:  𝑢 = 0, for 1 ≤ 𝑟 ≤ 𝜆, 

𝑡 > 0: {
𝑢 = 0           𝑎𝑡    𝑟 = 1 
𝑢 = 𝑈          𝑎𝑡   𝑟 = 𝜆

         (7) 

The solution of equation (6) is obtained by Laplace transform 
Technique with corresponding boundary conditions as follows; 

�̅� = 𝐶1𝐼0(𝛿𝑟) + 𝐶2𝐾0(𝛿𝑟) −
𝐴

𝑠𝛿2      (8) 

 
Equation (8) is in Laplace domain, hence the need to get its inverse 
in order to determine the velocity of the fluid flow in time domain. 
To achieve this, numerical procedure used in (Jha and Apere, 
2010) is employed. In this method, functions in the Laplace domain 
𝑠 can be inverted to the time domain 𝑇 as follows: 

𝑢(𝑟, 𝑡) =
exp(𝜖𝑇)

𝑇
[

1

2
�̅�(𝑟, 𝜖) + 𝑅𝑒 ∑ �̅� (𝑟, 𝜖 +

𝑖𝑘𝜋

𝑇
) (−1)𝑘𝑁

𝑘=1 ]

         (9) 

where 𝑅𝑒 refers to the 'real part of', 𝑖 = √−1 is imaginary number, 
𝑁 is the number of terms used in the Riemann-sum approximation 

and 𝜖 is the real part of the Bromwich contour that is used in 

inverting Laplace transforms. The Riemann-sum approximation for 
the Laplace inversion involves a single summation for the 
numerical process. Its accuracy depends on the value of 𝜖 and the 
truncation error dictated by 𝑁. According to Tzou [13], the value of 

𝜖 must be selected so that the Bromwich contour encloses all the 

branch point. For faster convergence the quantity 𝜖𝑇 = 4.7 gives 

the most satisfactory results since other tested values of 𝜖𝑇 seem 

to need longer computational time. 
 
 Skin-Friction and Mass Flux 
The skin friction 𝜏 is obtained by differentiating equation (9) with 

respect to 𝑟 

𝜏 =
𝑑𝑢

𝑑𝑟
           (10) 

The mass flux of the fluid flow through the concentric cylinders of 
an infinite extent is obtained as; 

𝑄(𝑟, 𝑠) = ∫ 𝑟. 𝑢 ̅(𝑟, 𝑠)𝑑𝑠
𝜆

1
  

=
1

𝛿
[𝐶1(𝐼1(𝛿) − 𝜆𝐼1(𝜆𝛿)) + 𝐶2(𝜆𝐾1(𝜆𝛿) − 𝐾1(𝛿))] −

1

2

𝐴

𝑠𝛿2
(𝐴2 − 1)             (11) 

    
Steady State Solution 
In order to validate the accuracy of the Riemann-sum 
approximation method, we set out to find the solution of the steady 
state, which should coincide with the transient solution at large 
time. The equation for the steady state velocity is obtained by 

setting   
𝜕𝑢

𝜕𝑡
  in Equation (6) to zero;  

𝑑2𝑢

𝑑𝑟2
+

1

𝑟

𝑑𝑢

𝑑𝑟
− 𝑀2𝑢 = −𝑃 − 𝑀2𝐾            (12) 

And its solution is given as; 
𝑢𝑠 = 𝐶3𝐼0(𝑀𝑟) + 𝐶4𝐾0(𝑀𝑟) + 𝐴2          (13) 

The steady state skin friction at the outer surface of the inner 
cylinder 𝜏1  and that of the inner surface of the outer cylinder 𝜏𝜆 is 

obtained by differentiating equation (13) as; 

 
𝑑𝑢𝑠

𝑑𝑟
= [𝐶3𝐼1(𝑀𝑟) − 𝐶4𝐾1(𝑀𝑟)]𝑀          (14) 

 

Where 𝐴2 =
𝑃

𝑀2 − 𝐾, 𝐴3 = 𝐾0(𝑀)𝐼0(𝑀𝜆) − 𝐼0(𝑀)𝐾0(𝑀𝜆),  

 𝐶3 =
[𝐾0(𝑀)(1 − 𝐴2) + 𝐴2𝐾0(𝑀𝜆)]

𝐴3
 ,   𝐶4

=
[𝐼0(𝑀)(𝐴2 − 1) + 𝐴2𝐼0(𝑀𝜆)]

𝐴3
 

 
RESULTS AND DISCUSSION 
In order to study the physical aspect of the problem, semi analytical 
solution is obtained by the combination of Laplace transform 
technique and the Riemann Sum Approximation. Expressions for 
velocity, skin-friction, mass flux and those for steady state are 
derived and presented graphically in Figs. 2 - 15 for K= 0, K =1; 
𝜆 = 3, 𝑃 = −5 and 5. For the pressure increasing in the direction 

of flow 𝑃 > 0, the velocity increases as the time increase, while 

reverse trend is observed in the case of pressure decreasing in the 
direction of flow 𝑃 < 0. This is evident from Figs.2 and 3. Fig.4 

and 5 show the effect of 𝑀 for 𝑡 = 0.2. It is observed that, 

increase in 𝑀 decreases the velocity in the case of positive 𝑃 while 

reverse in the case of negative 𝑃. The effect is more prominent 

when 𝐾 = 0 in the case of positive 𝑃 and when 𝐾 = 1 in the case 

of negative 𝑃. Fig. 6 and 7 depict the effects of 𝑀 and 𝑡 on the 

skin-friction at the outer surface of the inner cylinder 𝜏1. It is 
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observed that, increase in 𝑡 increases the skin-friction and it 

decreases with increase in 𝑀 in the case when 𝐾 = 0 while it 

increases in both increase in 𝑀 and 𝑡. Reverse behavior is seen 

in the case of positive 𝑃 particularly when 𝐾 = 0. 

 
Fig. 8 and 9, show the effects of 𝑃, 𝑀 and 𝑡  on the skin-friction at 

the outer surface of the inner cylinder 𝜏1. It is observed that, the 

skin-friction increases as 𝑡 increase for 𝑃 > 0, while reverse is the 

case for 𝑃 < 0. Worthy of note is the absence any effect when 

𝑃 = 0 and 𝐾 = 0. Also, increase in 𝑀increases the skin-friction 

for 𝑃 < 0 and 𝐾 = 0 while reverse is the case when 𝑃 > 0. 

Fig. 10 and 11 depict the effects of 𝑀, 𝑃 and 𝑡 on the skin-friction 

at the inner surface of the outer cylinder 𝜏𝜆. It is observed that, 

 𝜏𝜆 increases with decrease in 𝑡 and increases with increase in 𝑀 

in the case of 𝐾 = 0 while it increases with decrease in both 𝑀 

and 𝑡. This behaviour is seen when 𝑃 is positive (Fig.10). While in 
the case when 𝑃 is negative (Fig. 11),  𝜏𝜆 increases with increase 

in both 𝑀 and 𝑡 for 𝐾 = 0, while decreases with increase in 𝑀 

for 𝐾 = 1. 

Figs. 12 show the effects of 𝑀 and 𝑡 on 𝑄. It is seen that 𝑄 

increases with increase in both 𝑀 and 𝑡. The effects is more 

glaring when the magnetic field is fixed with the moving fluid in the 
middle of the annulus. Figs. 13 show the effects of 𝑃 and 𝑀 on 𝑄. 

It is seen that 𝑄 increases with increase in both 𝑃 and 𝑀. The 

effects is more glaring when the magnetic field is fixed with the 
moving fluid in the middle of the annulus. 
 

 
Fig.1: Schematic diagram of the problem 
 

 
Fig. 2: Velocity profile showing the effect of time 𝑡 for 𝐾 = 0 and 

𝐾 = 1, represented by 𝑎 and 𝑏 respectively and 𝑃 = 5. 

 

 
Fig.3: Velocity profile showing the effect of time 𝑡 for 𝐾 = 0 $ and 

𝐾 = 1 by 𝑎 and, represented respectively and 𝑃 = −5. 

 
Fig. 4: Velocity profile showing the effect of Hartmann number 𝑀 

for 𝐾 = 0 and 𝐾 = 1, represented by 𝑎 and 𝑏 respectively 

and 𝑃 = 5. 

 
Fig. 5: Velocity profile showing the effect of Hartmann number 𝑀 

for 𝐾 = 0 and 𝐾 = 1, represented by 𝑎 and 𝑏 respectively and 
𝑃 = −5. 

 

 
Fig.6: Variation of skin-friction with 𝑀 and 𝑡 at the outer surface of 

the inner cylinder for 𝑃 = 5, 𝐾 = 0 and 𝐾 = 1. 
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Fig.7: Variation of skin-friction with 𝑀 and 𝑡 at the outer surface of 

the inner cylinder for 𝑃 = −5, 𝐾 = 0 and 𝐾 = 1. 

 

 
Fig.8: Variation of skin-friction with 𝑃 and 𝑡 at the outer surface of 

the inner cylinder for 𝑃 = 5, 𝐾 = 0 and 𝐾 = 1 

 

 
Fig.9: Variation of skin-friction with 𝑃 and 𝑡 at the outer surface of 
the inner cylinder for 𝑃 = −5, 𝐾 = 0 and 𝐾 = 1. 

 

 
Fig.10: Variation of skin-friction with 𝑀 and 𝑡 at the inner surface 

of the outer cylinder for 𝑃 = 5, 𝐾 = 0 and 𝐾 = 1 

 
Fig.11: Variation of skin-friction with 𝑀 and 𝑡 at the inner surface 

of the outer cylinder for 𝑃 = −5, 𝐾 = 0 and 𝐾 = 1 

 

 
Fig.12: Variation of mass flux  (𝑄) with 𝑀 and 𝑡 at for 𝑃 = 5, 

𝐾 = 0 and 𝐾 = 1. 

 

 
Fig.13: Variation of mass flux  (𝑄) with 𝑀 and 𝑡 at for 𝑃 = −5, 

𝐾 = 0 and 𝐾 = 1 

 
Conclusion 
Generalized MHD Couette flow of a viscous incompressible 
electrically conducting fluid in an annuli when the outer cylinder is 
impulsively set into motion is considered. The Riemann-sum 
approximation method is used to invert the Bessel equation 
obtained through the Laplace transform technique into the time 
domain. The effects of Hartmann number 𝑀, the imposed pressure 

𝑃 and time 𝑡 is studied. It is observed that the velocity decreases 

with increase in Hartmann number 𝑀 when the magnetic field is 

fixed relative to the fluid; this is expected, as the magnetic field has 
a retarding influence on the flow fields. Conversely, an increase in 
velocity is noticed with increase in 𝑀 when the magnetic field is 

fixed relative to the moving outer cylinder. The skin friction is 
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discovered to increase with 𝑡 at all times, while decreases with 

𝑀 on the outer surface of the inner cylinder when 𝐾 = 0 and on 

the inner surface of the outer cylinder when 𝐾 = 1. However, the 

skin friction increases with 𝑀 on the outer surface of the inner 

cylinder when 𝐾 = 1 and also on the inner surface of the outer 

cylinder when 𝐾 = 0. 
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