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ABSTRACT  
Round Robin (RR) CPU scheduling is a scheduling technique that 
allocate equal time slice known as quantum time (QT) to processes 
wanting to use the CPU. Processes are allocated the CPU in a 
circular manner in such a way that if QT is greater than or equal to 
a process’ burst time, the process will run to completion otherwise 
the process will be interrupted and return to the tail of the ready 
queue for next round of execution. The average waiting time and 
turnaround time in a classical RR is higher when compared with 
First Come First Serve and Shortest Job First CPU scheduling 
algorithms. The existing technique Half Life Variable Quantum 
Time Round Robin (HLVQTRR) further increases the average 
waiting time and average turnaround time for the system. 
Researchers proposed a dynamic QT in order to improve the 
classical RR which has a static QT. In dynamic RR, there are more 
than one QT used for allocating time slot to processes as opposed 
to classical RR where a fix QT is used for the allocation. This 
research work is a proposal that modified HLVQTRR to be ‘An 
Improved Half Life Variable Quantum Time with Mean Time Slice 
Round Robin CPU Scheduling (ImHLVQTRR)’. In the proposed 
technique, two quantum time (QT1 and QT2) is calculated. QT1 is 
the average of all the processes in the ready queue and it is 
constant while QT2 is the half of each process burst and it changes 
depending on which process is in execution.  The proposed 
approach was developed and simulated using python programming 
language. Using python programing language, the proposed 
approach was developed and the system was simulated and 
compared against the classical RR and HLVQTRR. The result 
showed that the proposed technique (ImHLVQTRR) minimized 
average waiting time, average turnaround time and number of 
context switching  by 1292.087, 1292.089 and 27.40 time units 
respectively against the existing technique (HLVQTRR) and the 
classical RR. 
 
Keywords: CPU Scheduling, Operating System, Dynamic Round 
Robin, Quantum Time, Waiting Time. 
 
INTRODUCTION 
One of the major resources used in the computer is the Central 
Processing Unit popularly known as CPU. There are multiple 
request from processes to use the CPU but it can only attend to 
each request one at a time. Since CPU is a scarce resource, 
processes must compete to acquire it. This limited resource is 
managed by the Operating system (OS). The main functions of an 
OS is resource allocation and program management. The 
execution of user programs is the OS major concern(Silberschatz 
et al., 2005). The user programs will change to processes as soon 
as they are loaded into the main memory for execution. It is the 
responsibility of the OS to decide the process that will make use 
the CPU through a technique known as CPU scheduling. The OS 

decides the order of execution through the scheduler (Khokhar and 
Kaushik, 2017). The scheduler uses some scheduling algorithms 
to allocate CPU to processes ready for execution. This is done by 
assigning time slot to respective processes is known as CPU 
scheduling (Mody and Mirkar, 2019). This technique is necessary 
in managing resource allocation in the system (Danjuma et al., 
2021). CPU scheduling sometimes may be preemptive or non-
preemptive. In a preemptive scheduling, a process may 
involuntarily relinquish its resource (CPU) before completion of its 
execution. This is possible as a result of timer interrupt or a process 
with a higher priority request to use the CPU. On the other hand, in 
a non-preemptive scheduling, a process relinquishes its resource 
(CPU) voluntarily not by force. A process may voluntarily release a 
resource if it run to completion or the process may be in need of a 
different resource such as input/output operation. 
 
Types of CPU Scheduling Algorithms 
Among the several types of CPU scheduling algorithms, the main 
types are briefly discussed in this section according to Omar et al. 
(2021), which are:  First Come First Serve (FCFS), Shortest Job 
First (SJF), Priority Scheduling and Round Robin (RR). Each of 
these techniques have their advantages and disadvantages for 
processes allocation.  
In FCFS algorithm, the first process that arrive will be assign the 
CPU and then the next process and so on. FCFS is very simple 
and easy to implement but it may increase the overall waiting time 
if processes that arrive earlier have larger CPU bursts. In the case 
of SJF algorithm, a process with the shortest burst time is executed 
first and then next and so on. This algorithm gives the best average 
waiting time when compare with other algorithms. However, SJF 
may lead to starvation. If processes with shorter bursts keep 
coming into the system, the processes with larger bursts will have 
to wait indefinitely. In priority scheduling, processes are executed 
base on their priority levels. The one with the highest priority is 
executed first and then the next once and so on. As for Round 
Robin CPU scheduling, processes are allocated the CPU in a 
circular manner such that each process is given equal time slot 
known as quantum time (QT) for execution. If QT is greater than or 
equal to a process’ burst, the process will run to completion 
otherwise the process will be interrupted and return to the tail of the 
ready queue for next round of execution. One of the most frequently 
used CPU scheduling algorithms is RR (Paul et al., 2019). The 
advantage of RR is the equal time slice given to each process in 
the system. The disadvantage of RR is the cost of context switching 
added to the system since some process that did not complete their 
execution will have to return for some subsequent rounds of 
execution. As a result of this, the average waiting time and 
turnaround time in a classical RR is always higher when compared 
with First Come First Serve and Shortest Job First CPU scheduling 
algorithms (Ashiru et al., 2014a).  
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Round Robin can be static or dynamic. A static RR uses a fixed 
single quantum time (QT) for all processes in the ready queue and 
in all rounds(Zouaoui et al., 2019). Fixed QT has some 
disadvantages (Fiad et al., 2020). Processes whose burst time are 
just small enough larger than QT will have return for execution in 
the next round. In dynamic RR, there are more than one QT use 
for allocating time slot to processes. Dynamic QT allocation 
technique is more efficient than static QT allocation technique 
(Alazzam et al., 2019). Using some mathematical and logical 
problem solving technique variable QT can be obtain and use for 
CPU allocation. 
 
Process States 
A process is a program that is already executing. A process is 
defined as an active program (Ashiru et al., 2014b). Once a 
program is loaded into the memory for execution, it automatically 
changes to a process. This process can be in five different state in 
its life cycle – new, ready, running, terminated or waiting. If a 
process is just created, it will be in a new state. If it is waiting for 
the CPU, that process will be in a ready state. A process is in 
running state if it is currently executing. When a running process 
finished executing, it will be in a terminated state. A process that is 
using any other resource such as input/output device other than the 
CPU will be in a waiting state. Figure 1 is a diagram representing 
process states. 

 
Figure 1: process state diagram 
Source (Silberschatz et al., 2005) 
 
Evaluation Parameters 
The criteria used for evaluation are average waiting time (AWT), 
average turnaround time (ATAT) and number of context switching 
CS). 

 Waiting Time: This is the total time taken by a process in the 
ready waiting for the CPU. This criteria should be minimized 
always. The lower the waiting, the better the performance of 
the system. 

 Turnaround Time: It is the overall time taken by a process to 
finish executing. It is the time taken for a process waiting in 
the ready queue plus the time it takes executing. This criteria 
should be minimized. 

 Context Switching: This is the time taking switching the CPU 
from one process to another. The CPU is idle at the point of 
context switching. This is pure overhead which need to be 
minimized. 
 

Review of Related Literatures 
Various research works on how to apply variable quantum time to 
RR CPU scheduling had been proposed. This is because the 
classical RR has a fix QT that cannot change throughout process 
execution. With dynamic QT, average waiting time, average 

turnaround time and number of context switching can be 
minimized. (Ashiru et al., 2014b) proposed a dynamic variable 
quantum time in which processes are allocated half of their QT in 
their first round. Each process remaining burst time will be used as 
the QT for each in the next round. In this approach, processes go 
for two rounds before it finish executing. For all process 𝑃𝑖with 

burst time, 𝐵𝑇𝑖, QT will be
𝐵𝑇𝑖

2⁄ . (Sohrawordi et al., 2019) 

proposed a dynamic RR where QT is the average of processes’ 
bursts in the ready queue. The processes are sorted in ascending 
order such that the process with the smallest burst is executed first 
and then the next and so on. Given a process 𝑃 where  𝑃𝑖 = 

{𝑃1, 𝑃2, 𝑃3, … , 𝑃𝑛}. The QT=𝐴𝑉𝐺(∑ 𝑃𝑖)𝑛
𝑖=0 . (Khokhar and 

Kaushik, 2017) proposed a dynamic RR where QT is the average 
between the median and the mean of processes’ bursts. Processes 
are arranged in an increasing order such that the process with 
smallest burst time are executed first and then followed by the next 
and so on. It is calculated as, QT= (mean + median)/2. (Mody and 
Mirkar, 2019) proposed a RR technique where CPU are allocated 
to processes dynamically using two factors – Smart Time Quantum 
(STQ) and Delta. STQ is the average difference between adjacent 
processes’ bursts in the ready queue while Delta is (STQ)/2. The 
QT is given as STQ + Delta. (Paul et al., 2019) proposed variable 
quantum for RR CPU scheduling using three different QT under 
various scenario. In the first case, if the number of process in the 
ready queue is less than or equal to 4 then the average of 
processes’ bursts will be used as their QT. That is 
QT=𝐴𝑉𝐺(∑ 𝐵𝑇𝑖

𝑛
𝑖=0 ). In another case, if the number of processes 

is even, then the QT will be the average between the first process, 
the last process, the median process and the process just after the 

median process. That is, QT=𝐴𝑉𝐺 (𝐵𝑇𝑖 , 𝐵𝑇𝑁, 𝐵𝑇𝑁

2

, 𝐵𝑇𝑁

2
+1

). 

Also, in a situation where the number of process in the ready queue 
are odd, the QT will be the average between the first process, the 
last process, the process just after the median process and the 
process just before the media process. That is, 
QT=𝐴𝑉𝐺(𝐵𝑇𝑖 , 𝐵𝑇𝑁, 𝐵𝑇𝑁

2
−1

, 𝐵𝑇𝑁

2
+1

). (Biswas et al., 2018) 

proposed a dynamic RR CPU scheduling where QT is the sum of 
the maximum difference between adjacent processes’ bursts and 
the process with the least burst time. That is QT=𝑀𝐴𝑋 + 𝐵𝑇[0], 

where MAX= (𝑀𝐴𝑋, 𝑑𝑖𝑓𝑓) and 𝑑𝑖𝑓𝑓 = 𝐵𝑇[𝑖 + 1] − 𝐵𝑇[𝑖]. 
Processes are sorted in ascending order and are executed from 
the process with the least burst time up to the process with the 
largest burst time. 
 
Description of the Existing Technique (HLVQTRR) 
Half Life Variable Quantum Time Round Robin (HLVQTRR) is a 
proposed RR CPU scheduling algorithm by (Ashiru et al., 2014b) 
where QT is calculated and allocated to processes dynamically. 
The QT is a variable one in which half of each process’ burst was 
used as its time slice. That is, if a process 𝑃𝑖 has a burst time𝐵𝑇𝑖, 

its QT will be 
𝐵𝑇𝑖

2
. For example, if the burst time of process 𝑃𝑖 is 20 

time unit, the QT of process 𝑃𝑖 will be 20/2=10 time unit. This 

proposed technique ensured that each process must go for two 
rounds to complete its execution. The system will incurred the cost 
of performing context switching and CS is a pure system overhead 
because the CPU is idle at that time (Mishra and Rashid, 2014). 
This will lead to poor average waiting time and average turnaround 
time. The proposed technique will improve the average waiting 
time, average turnaround time and number of context switching. 
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Description of the Proposed Technique (IMHLVQTRR) 
The proposed technique is a direct improvement of HLVQTRR 
CPU scheduling technique. In this research work, variable quantum 
is used when allocating time slice to processes in the ready queue. 
It assume that all processes are already waiting in ready to be 
assign CPU for execution. If the burst time of a process is less than 
or equal to the average burst time for all the processes in the ready 
queue, the QT for that process will be the average burst time for all 
the processes in the ready queue. Otherwise, if the process burst 
time is greater than the average burst time for all the processes, 
the QT will be half of its burst time. This technique just as the 
existing technique ensures that process execution cannot go 
beyond two rounds. In the first round, a process may run to 
completion or may execute half of its burst time while in the second 
round, those that executed half of their burst time will run to 
completion. That is, the system has two QT. the first QT (QT1) is 
the average burst of the processes in the ready queue and the 
second QT (QT2) is half of the burst time of each process. If the 
burst of a process is greater than half of the average burst time for 
all the processes in the ready queue, the QT for that process will 
be QT2 while those processes whose burst time are less or equal 
to half of the burst time of all the processes in the ready queue, 
their QT will be QT1. Those processes that will go for the second 
round, their burst time will automatically be adjusted to be their QT. 
For example, consider a set of processes 𝑃𝑖 such that 𝑃𝑖 =
{𝑃1, 𝑃2, 𝑃3, … , 𝑃𝑛} with their respective burst 

time{𝐵𝑇1, 𝐵𝑇2, 𝐵𝑇3, … , 𝐵𝑇𝑛}. For instance, if the average bursts 

(𝐵𝑇1 𝑡𝑜 𝐵𝑇𝑛)for the processes 𝑃𝑖 = {𝑃1, 𝑃2, 𝑃3, … , 𝑃𝑛}is 45 
and process 𝑃1 and 𝑃2 have their burst time to be 20 and 50 

respectively. The QT for 𝑃1 will be 45 while that of 𝑃2 will be
𝐵𝑇2

2
=

50

2
= 25. 

The flowchart for the proposed technique (ImHLVQTRR) is shown 
in figure 2. 

 
 
Figure 2: Flowchart for the proposed technique (ImHLVQTRR) 

Illustration/Demonstration 
Consider a set of five processes P1, P2, P3, P4, and P5 with their 
respective burst times 20, 45, 13, 65, 28 and 32 as shown in the 
table 1. 
 
The Classical RR 
Using the classical RR, the average burst time for all the processes 
in the ready queue is used as the QT. According to table 1, QT = 
(20+45+13+65+28+32)/6=34. This value is used to assign time slot 
to processes in the ready queue in each rounds. 
 
Table 1: Rounds for Classical RR technique 

 
 
Using table 1, the Gantt chart for the existing technique is 
generated as shown in chart I. 

 
Chart I: Gantt chart for Classical RR 
 
From chart I, the average waiting time, average turnaround time 
and number of context switching is calculated. 
P1: 0, P2: 20 + (161-54) =127, P3: 54, P4: 67 + (172-101) =138, 
P5: 101, P6: 129 
AWT= (0+127+54+138+101+129)/6 = 549/6=91.50 
AWT= (0+20) + (45+127) + (13+54) + (65+138) + (28+101) + 
(32+129) = 710/6=118.33  
Number of CS = 8 
 
The Existing Technique (HLVQTRR) 
Using the existing technique, half of each process burst is executed 
in the first round while the remaining burst will be executed in the 
second round with the assumption that Quantum Time (QT) is a 
whole number for ease of computation. 
 
Table 2: Rounds for the existing technique (HLVQTRR) 

 
Using table 2, the Gantt chart for the existing technique is 
generated as shown in chart II. 
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Chart II: Gantt chart for HLVQTRR 
 
From chart II, we can calculate the average waiting time, average 
turnaround time and number of context switching. 
 
P1: 0+ (100-10)=90, P2: 10+ (110-32)=88, P3: 32+(133-38)=127, 
P4: 38+(140-70)=108,  
P5: 70+(173-84)=159,  P6: 84+ (187-100) =171 
AWT= (90+88+127+108+159+171)/6 = 743/6=123.83 
AWT= (20+90) + (45+88)+ (13+127)+ (65+108) +(28+159)+ 
(32+171) = 946/6=157.66  
Number of CS = 12 
 
The Proposed Technique (ImHLVQTRR) 
In the proposed technique, two quantum time (QT1 and QT2) is 
calculated. QT1 is the average of all the processes in the ready 
queue and it is constant while QT2 is the half of each process burst 
and it changes depending on which process is in execution. If 
process 𝑃𝑖 is assigned the CPU, the scheduler will allocated time 

slot of QT1 to 𝑃𝑖 if its burst time is greater than QT1, otherwise the 

system will allocate QT2 as the time slot for process 𝑃𝑖. That is, if 

the burst time of process 𝑃𝑖 is less than or equal to the average 

burst time for all the processes in the ready queue, the process will 
execute half of its burst time only, otherwise it will use the average 
burst time for all the processes in the ready queue as its quantum 
time. 
 
Table 3: Rounds for the proposed technique (ImHLVQTRR) 

 
 
As shown in table 3, process P1, P3, P5, and P6 run to completion 
because their burst time is less than average burst time for the 
processes in the ready queue. Also, as it can be seen in, process 
P2 and P4 returned for the second round for execution since their 
burst time is greater than the average burst time for all the 
processes in the ready queue. The Gantt chart is represented in 
chart III. 

 
Chart III: Gantt chart for ImHLVQTRR 
 
Using chart III, the average waiting time, average turnaround time 
and number of context switching can be calculated as: 
P1: 0, P2: 20 + (147-42) =125, P3: 42, P4: 55 + (170-87) =138, P5: 
87, P6: 115 
AWT= (0+125+42+138+87+115)/6 = 507/6=84.50 

AWT= (0+20) + (45+125) + (13+42) + (65+138) + (28+87) + 
(32+115) = 710/6=118.33  
Number of CS = 8 
 
PRESENTATION AND DISCUSSION OF RESULTS 
 

 
Figure 3: Inputs and randomly generated processes bursts times 
 

 
Figure 4: Interface result for the Classical RR 
 

 
Figure 5: Interface result for the HLVQTRR 
 

 
Figure 6: Interface result for the ImHLVQTRR 
 
Figure 3 shows the burst time generated for 6 processes using 
number of processes, lower bound and upper bound as the input 
parameters. The interfaces in figure 4, figure 5 and figure 6 shows 
the results computed for classical RR, HLVQTRR and ImHVQTRR 
respectively. From the results, it is clear that the proposed 
technique (ImHLVQTRR) minimizes average waiting time, average 
turnaround time and number of context switching when compared 
with the existing technique (HLVQTRR). In the same vein, though 
the number of context switching is the same for the proposed 
technique and the classical RR yet the proposed technique 
provides better average waiting time and average turnaround time 
compared to the classical RR. 
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SIMULATION OUTPUT BETWEEN CLASSICAL RR, HLVQTRR 
and IMHLVQTRR 
 
Table 4: Outputs of Simulation between Classical RR, HLVQTRR 
and ImHLVQTRR 

 
 
Table 4 shows the simulated result between Classical RR, 
HLVQTRR and ImHLVQTRR on the performance of the algorithms 
in terms of average waiting time (AWT), average turnaround time 
(ATAT) and the number of context switching (CS). In this table, nP 
represents number of process, LB represents lower bound while 
UB is upper bound. When the program is executed, it will require 
three parameters – nP, LB and UB to generate random variables 
between LB and UB equal to the number of processes entered. For 
example, nP=10, LB=6 and UB=76 will generate 10 random 
variables which are between 6 and 76. In each of these cases, 
AWT, ATAT and CS is calculated for all the three algorithms. From 
table 4, after 10 runs, the average total for the existing technique 
(HLVQTRR) in terms of AWT, ATAT and CS are 5492.781, 
5597.496 and 110 time units while for the proposed technique 
(ImHLVQTRR) are 4200.694, 4305.407 and 82.6 time units. By 
taking the difference, the results show that the proposed technique 
(ImHLVQTRR) minimizes AWT, ATAT and CS by 1292.087, 
1292.089 and 27.40 time units respectively when compared with 
the existing technique (HLVQTRR). As for the classical RR, the 
proposed technique provides better AWT and ATAT than the 
Classical RR even though the number of context switching is the 
same for both algorithms. The graph for the results are plotted and 
shown in figure 7, 8 and 9 
 

 
Figure 7: AWT: Classical RR Vs. HLVQTRR and ImHLVQTRR 

Figure 7 shows the average waiting time between Classical RR Vs. 
HLVQTRR and ImHLVQTRR. In this presentation, the proposed 
technique provide the minimum average waiting time and then 
followed by the classical RR. HLVQTRR provide the worst waiting 
time. 
 

 
Figure 8: ATAT: Classical RR Vs. HLVQTRR and ImHLVQTRR 
 
Figure 8 shows the result that compare the average turnaround 
time for the simulation between Classical RR, HLVQTRR and the 
proposed techniques (ImHLVQTRR). From this graph, the 
proposed technique gives the minimum average turnaround time 
and then followed by the classical RR. HLVQTRR produces the 
worst turnaround time. 
 

 
Figure 9: CS: Classical RR Vs. HLVQTRR and ImHLVQTRR 
 
From Figure 9, the number of context switching is the same 
between the proposed technique (ImHLVQTRR) and the classical 
RR while HLVQTRR produces the worst context switching 
 
Conclusion 
The target of CPU scheduling algorithms is to minimize average 
waiting time, average turnaround time and number of context 
switching. The existing technique (HLVQTRR) proposed by (Ashiru 
et al., 2014b) further increased the average waiting time, average 
turnaround time and number of context switching as shown in table 
4. In order to improve the existing technique, a modified version of 
HLVQTRR known as ‘An Improved Half Life Variable Quantum 
Time with Mean Time Slice Round Robin CPU Scheduling 
(ImHLVQTRR)’was proposed. The simulation results showed that 
the average waiting time and average turnaround time is greatly 
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improved when compared with the classical RR and the existing 
technique (HLVQTRR). More so, concerning the number of context 
switching, the proposed technique and the classical RR have equal 
number of switching. As for the existing technique regarding 
context switching, the proposed method minimized number of 
context switching more than the existing technique. This algorithm 
showed great promise in CPU scheduling. 
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