
Science World Journal Vol. 17(No 2) 2022
www.scienceworldjournal.org
ISSN: 1597-6343 (Online), ISSN: 2756-391X (Print)
Published by Faculty of Science, Kaduna State University

 An Improved Half Life Variable Quantum Time with Mean Time Slice Round Robin
CPU Scheduling (ImHLVQTRR)

248

AN IMPROVED HALF LIFE VARIABLE QUANTUM TIME WITH MEAN
TIME SLICE ROUND ROBIN CPU SCHEDULING (IMHLVQTRR)

Ashiru Simon, *Gabriel Lazarus Dams, Salome Danjuma

Department of Computer Science, Kaduna State University, Tafawa Balewa Way, Kaduna, Nigeria

*Corresponding Author Email Address: damsgabe@kasu.edu.ng

ABSTRACT
Round Robin (RR) CPU scheduling is a scheduling technique that
allocate equal time slice known as quantum time (QT) to processes
wanting to use the CPU. Processes are allocated the CPU in a
circular manner in such a way that if QT is greater than or equal to
a process’ burst time, the process will run to completion otherwise
the process will be interrupted and return to the tail of the ready
queue for next round of execution. The average waiting time and
turnaround time in a classical RR is higher when compared with
First Come First Serve and Shortest Job First CPU scheduling
algorithms. The existing technique Half Life Variable Quantum
Time Round Robin (HLVQTRR) further increases the average
waiting time and average turnaround time for the system.
Researchers proposed a dynamic QT in order to improve the
classical RR which has a static QT. In dynamic RR, there are more
than one QT used for allocating time slot to processes as opposed
to classical RR where a fix QT is used for the allocation. This
research work is a proposal that modified HLVQTRR to be ‘An
Improved Half Life Variable Quantum Time with Mean Time Slice
Round Robin CPU Scheduling (ImHLVQTRR)’. In the proposed
technique, two quantum time (QT1 and QT2) is calculated. QT1 is
the average of all the processes in the ready queue and it is
constant while QT2 is the half of each process burst and it changes
depending on which process is in execution. The proposed
approach was developed and simulated using python programming
language. Using python programing language, the proposed
approach was developed and the system was simulated and
compared against the classical RR and HLVQTRR. The result
showed that the proposed technique (ImHLVQTRR) minimized
average waiting time, average turnaround time and number of
context switching by 1292.087, 1292.089 and 27.40 time units
respectively against the existing technique (HLVQTRR) and the
classical RR.

Keywords: CPU Scheduling, Operating System, Dynamic Round
Robin, Quantum Time, Waiting Time.

INTRODUCTION
One of the major resources used in the computer is the Central
Processing Unit popularly known as CPU. There are multiple
request from processes to use the CPU but it can only attend to
each request one at a time. Since CPU is a scarce resource,
processes must compete to acquire it. This limited resource is
managed by the Operating system (OS). The main functions of an
OS is resource allocation and program management. The
execution of user programs is the OS major concern(Silberschatz
et al., 2005). The user programs will change to processes as soon
as they are loaded into the main memory for execution. It is the
responsibility of the OS to decide the process that will make use
the CPU through a technique known as CPU scheduling. The OS

decides the order of execution through the scheduler (Khokhar and
Kaushik, 2017). The scheduler uses some scheduling algorithms
to allocate CPU to processes ready for execution. This is done by
assigning time slot to respective processes is known as CPU
scheduling (Mody and Mirkar, 2019). This technique is necessary
in managing resource allocation in the system (Danjuma et al.,
2021). CPU scheduling sometimes may be preemptive or non-
preemptive. In a preemptive scheduling, a process may
involuntarily relinquish its resource (CPU) before completion of its
execution. This is possible as a result of timer interrupt or a process
with a higher priority request to use the CPU. On the other hand, in
a non-preemptive scheduling, a process relinquishes its resource
(CPU) voluntarily not by force. A process may voluntarily release a
resource if it run to completion or the process may be in need of a
different resource such as input/output operation.

Types of CPU Scheduling Algorithms
Among the several types of CPU scheduling algorithms, the main
types are briefly discussed in this section according to Omar et al.
(2021), which are: First Come First Serve (FCFS), Shortest Job
First (SJF), Priority Scheduling and Round Robin (RR). Each of
these techniques have their advantages and disadvantages for
processes allocation.
In FCFS algorithm, the first process that arrive will be assign the
CPU and then the next process and so on. FCFS is very simple
and easy to implement but it may increase the overall waiting time
if processes that arrive earlier have larger CPU bursts. In the case
of SJF algorithm, a process with the shortest burst time is executed
first and then next and so on. This algorithm gives the best average
waiting time when compare with other algorithms. However, SJF
may lead to starvation. If processes with shorter bursts keep
coming into the system, the processes with larger bursts will have
to wait indefinitely. In priority scheduling, processes are executed
base on their priority levels. The one with the highest priority is
executed first and then the next once and so on. As for Round
Robin CPU scheduling, processes are allocated the CPU in a
circular manner such that each process is given equal time slot
known as quantum time (QT) for execution. If QT is greater than or
equal to a process’ burst, the process will run to completion
otherwise the process will be interrupted and return to the tail of the
ready queue for next round of execution. One of the most frequently
used CPU scheduling algorithms is RR (Paul et al., 2019). The
advantage of RR is the equal time slice given to each process in
the system. The disadvantage of RR is the cost of context switching
added to the system since some process that did not complete their
execution will have to return for some subsequent rounds of
execution. As a result of this, the average waiting time and
turnaround time in a classical RR is always higher when compared
with First Come First Serve and Shortest Job First CPU scheduling
algorithms (Ashiru et al., 2014a).

F
u

ll
L

en
g

th
 R

es
ea

rc
h

 A
rt

ic
le

http://www.scienceworldjournal.org/

Science World Journal Vol. 17(No 2) 2022
www.scienceworldjournal.org
ISSN: 1597-6343 (Online), ISSN: 2756-391X (Print)
Published by Faculty of Science, Kaduna State University

 An Improved Half Life Variable Quantum Time with Mean Time Slice Round Robin
CPU Scheduling (ImHLVQTRR)

249

Round Robin can be static or dynamic. A static RR uses a fixed
single quantum time (QT) for all processes in the ready queue and
in all rounds(Zouaoui et al., 2019). Fixed QT has some
disadvantages (Fiad et al., 2020). Processes whose burst time are
just small enough larger than QT will have return for execution in
the next round. In dynamic RR, there are more than one QT use
for allocating time slot to processes. Dynamic QT allocation
technique is more efficient than static QT allocation technique
(Alazzam et al., 2019). Using some mathematical and logical
problem solving technique variable QT can be obtain and use for
CPU allocation.

Process States
A process is a program that is already executing. A process is
defined as an active program (Ashiru et al., 2014b). Once a
program is loaded into the memory for execution, it automatically
changes to a process. This process can be in five different state in
its life cycle – new, ready, running, terminated or waiting. If a
process is just created, it will be in a new state. If it is waiting for
the CPU, that process will be in a ready state. A process is in
running state if it is currently executing. When a running process
finished executing, it will be in a terminated state. A process that is
using any other resource such as input/output device other than the
CPU will be in a waiting state. Figure 1 is a diagram representing
process states.

Figure 1: process state diagram
Source (Silberschatz et al., 2005)

Evaluation Parameters
The criteria used for evaluation are average waiting time (AWT),
average turnaround time (ATAT) and number of context switching
CS).

 Waiting Time: This is the total time taken by a process in the
ready waiting for the CPU. This criteria should be minimized
always. The lower the waiting, the better the performance of
the system.

 Turnaround Time: It is the overall time taken by a process to
finish executing. It is the time taken for a process waiting in
the ready queue plus the time it takes executing. This criteria
should be minimized.

 Context Switching: This is the time taking switching the CPU
from one process to another. The CPU is idle at the point of
context switching. This is pure overhead which need to be
minimized.

Review of Related Literatures
Various research works on how to apply variable quantum time to
RR CPU scheduling had been proposed. This is because the
classical RR has a fix QT that cannot change throughout process
execution. With dynamic QT, average waiting time, average

turnaround time and number of context switching can be
minimized. (Ashiru et al., 2014b) proposed a dynamic variable
quantum time in which processes are allocated half of their QT in
their first round. Each process remaining burst time will be used as
the QT for each in the next round. In this approach, processes go
for two rounds before it finish executing. For all process 𝑃𝑖with

burst time, 𝐵𝑇𝑖, QT will be
𝐵𝑇𝑖

2⁄ . (Sohrawordi et al., 2019)

proposed a dynamic RR where QT is the average of processes’
bursts in the ready queue. The processes are sorted in ascending
order such that the process with the smallest burst is executed first
and then the next and so on. Given a process 𝑃 where 𝑃𝑖 =

{𝑃1, 𝑃2, 𝑃3, … , 𝑃𝑛}. The QT=𝐴𝑉𝐺(∑ 𝑃𝑖)𝑛
𝑖=0 . (Khokhar and

Kaushik, 2017) proposed a dynamic RR where QT is the average
between the median and the mean of processes’ bursts. Processes
are arranged in an increasing order such that the process with
smallest burst time are executed first and then followed by the next
and so on. It is calculated as, QT= (mean + median)/2. (Mody and
Mirkar, 2019) proposed a RR technique where CPU are allocated
to processes dynamically using two factors – Smart Time Quantum
(STQ) and Delta. STQ is the average difference between adjacent
processes’ bursts in the ready queue while Delta is (STQ)/2. The
QT is given as STQ + Delta. (Paul et al., 2019) proposed variable
quantum for RR CPU scheduling using three different QT under
various scenario. In the first case, if the number of process in the
ready queue is less than or equal to 4 then the average of
processes’ bursts will be used as their QT. That is
QT=𝐴𝑉𝐺(∑ 𝐵𝑇𝑖

𝑛
𝑖=0). In another case, if the number of processes

is even, then the QT will be the average between the first process,
the last process, the median process and the process just after the

median process. That is, QT=𝐴𝑉𝐺 (𝐵𝑇𝑖 , 𝐵𝑇𝑁, 𝐵𝑇𝑁

2

, 𝐵𝑇𝑁

2
+1

).

Also, in a situation where the number of process in the ready queue
are odd, the QT will be the average between the first process, the
last process, the process just after the median process and the
process just before the media process. That is,
QT=𝐴𝑉𝐺(𝐵𝑇𝑖 , 𝐵𝑇𝑁, 𝐵𝑇𝑁

2
−1

, 𝐵𝑇𝑁

2
+1

). (Biswas et al., 2018)

proposed a dynamic RR CPU scheduling where QT is the sum of
the maximum difference between adjacent processes’ bursts and
the process with the least burst time. That is QT=𝑀𝐴𝑋 + 𝐵𝑇[0],

where MAX= (𝑀𝐴𝑋, 𝑑𝑖𝑓𝑓) and 𝑑𝑖𝑓𝑓 = 𝐵𝑇[𝑖 + 1] − 𝐵𝑇[𝑖].
Processes are sorted in ascending order and are executed from
the process with the least burst time up to the process with the
largest burst time.

Description of the Existing Technique (HLVQTRR)
Half Life Variable Quantum Time Round Robin (HLVQTRR) is a
proposed RR CPU scheduling algorithm by (Ashiru et al., 2014b)
where QT is calculated and allocated to processes dynamically.
The QT is a variable one in which half of each process’ burst was
used as its time slice. That is, if a process 𝑃𝑖 has a burst time𝐵𝑇𝑖,

its QT will be
𝐵𝑇𝑖

2
. For example, if the burst time of process 𝑃𝑖 is 20

time unit, the QT of process 𝑃𝑖 will be 20/2=10 time unit. This

proposed technique ensured that each process must go for two
rounds to complete its execution. The system will incurred the cost
of performing context switching and CS is a pure system overhead
because the CPU is idle at that time (Mishra and Rashid, 2014).
This will lead to poor average waiting time and average turnaround
time. The proposed technique will improve the average waiting
time, average turnaround time and number of context switching.

http://www.scienceworldjournal.org/

Science World Journal Vol. 17(No 2) 2022
www.scienceworldjournal.org
ISSN: 1597-6343 (Online), ISSN: 2756-391X (Print)
Published by Faculty of Science, Kaduna State University

 An Improved Half Life Variable Quantum Time with Mean Time Slice Round Robin
CPU Scheduling (ImHLVQTRR)

250

Description of the Proposed Technique (IMHLVQTRR)
The proposed technique is a direct improvement of HLVQTRR
CPU scheduling technique. In this research work, variable quantum
is used when allocating time slice to processes in the ready queue.
It assume that all processes are already waiting in ready to be
assign CPU for execution. If the burst time of a process is less than
or equal to the average burst time for all the processes in the ready
queue, the QT for that process will be the average burst time for all
the processes in the ready queue. Otherwise, if the process burst
time is greater than the average burst time for all the processes,
the QT will be half of its burst time. This technique just as the
existing technique ensures that process execution cannot go
beyond two rounds. In the first round, a process may run to
completion or may execute half of its burst time while in the second
round, those that executed half of their burst time will run to
completion. That is, the system has two QT. the first QT (QT1) is
the average burst of the processes in the ready queue and the
second QT (QT2) is half of the burst time of each process. If the
burst of a process is greater than half of the average burst time for
all the processes in the ready queue, the QT for that process will
be QT2 while those processes whose burst time are less or equal
to half of the burst time of all the processes in the ready queue,
their QT will be QT1. Those processes that will go for the second
round, their burst time will automatically be adjusted to be their QT.
For example, consider a set of processes 𝑃𝑖 such that 𝑃𝑖 =
{𝑃1, 𝑃2, 𝑃3, … , 𝑃𝑛} with their respective burst

time{𝐵𝑇1, 𝐵𝑇2, 𝐵𝑇3, … , 𝐵𝑇𝑛}. For instance, if the average bursts

(𝐵𝑇1 𝑡𝑜 𝐵𝑇𝑛)for the processes 𝑃𝑖 = {𝑃1, 𝑃2, 𝑃3, … , 𝑃𝑛}is 45
and process 𝑃1 and 𝑃2 have their burst time to be 20 and 50

respectively. The QT for 𝑃1 will be 45 while that of 𝑃2 will be
𝐵𝑇2

2
=

50

2
= 25.

The flowchart for the proposed technique (ImHLVQTRR) is shown
in figure 2.

Figure 2: Flowchart for the proposed technique (ImHLVQTRR)

Illustration/Demonstration
Consider a set of five processes P1, P2, P3, P4, and P5 with their
respective burst times 20, 45, 13, 65, 28 and 32 as shown in the
table 1.

The Classical RR
Using the classical RR, the average burst time for all the processes
in the ready queue is used as the QT. According to table 1, QT =
(20+45+13+65+28+32)/6=34. This value is used to assign time slot
to processes in the ready queue in each rounds.

Table 1: Rounds for Classical RR technique

Using table 1, the Gantt chart for the existing technique is
generated as shown in chart I.

Chart I: Gantt chart for Classical RR

From chart I, the average waiting time, average turnaround time
and number of context switching is calculated.
P1: 0, P2: 20 + (161-54) =127, P3: 54, P4: 67 + (172-101) =138,
P5: 101, P6: 129
AWT= (0+127+54+138+101+129)/6 = 549/6=91.50
AWT= (0+20) + (45+127) + (13+54) + (65+138) + (28+101) +
(32+129) = 710/6=118.33
Number of CS = 8

The Existing Technique (HLVQTRR)
Using the existing technique, half of each process burst is executed
in the first round while the remaining burst will be executed in the
second round with the assumption that Quantum Time (QT) is a
whole number for ease of computation.

Table 2: Rounds for the existing technique (HLVQTRR)

Using table 2, the Gantt chart for the existing technique is
generated as shown in chart II.

http://www.scienceworldjournal.org/

Science World Journal Vol. 17(No 2) 2022
www.scienceworldjournal.org
ISSN: 1597-6343 (Online), ISSN: 2756-391X (Print)
Published by Faculty of Science, Kaduna State University

 An Improved Half Life Variable Quantum Time with Mean Time Slice Round Robin
CPU Scheduling (ImHLVQTRR)

251

Chart II: Gantt chart for HLVQTRR

From chart II, we can calculate the average waiting time, average
turnaround time and number of context switching.

P1: 0+ (100-10)=90, P2: 10+ (110-32)=88, P3: 32+(133-38)=127,
P4: 38+(140-70)=108,
P5: 70+(173-84)=159, P6: 84+ (187-100) =171
AWT= (90+88+127+108+159+171)/6 = 743/6=123.83
AWT= (20+90) + (45+88)+ (13+127)+ (65+108) +(28+159)+
(32+171) = 946/6=157.66
Number of CS = 12

The Proposed Technique (ImHLVQTRR)
In the proposed technique, two quantum time (QT1 and QT2) is
calculated. QT1 is the average of all the processes in the ready
queue and it is constant while QT2 is the half of each process burst
and it changes depending on which process is in execution. If
process 𝑃𝑖 is assigned the CPU, the scheduler will allocated time

slot of QT1 to 𝑃𝑖 if its burst time is greater than QT1, otherwise the

system will allocate QT2 as the time slot for process 𝑃𝑖. That is, if

the burst time of process 𝑃𝑖 is less than or equal to the average

burst time for all the processes in the ready queue, the process will
execute half of its burst time only, otherwise it will use the average
burst time for all the processes in the ready queue as its quantum
time.

Table 3: Rounds for the proposed technique (ImHLVQTRR)

As shown in table 3, process P1, P3, P5, and P6 run to completion
because their burst time is less than average burst time for the
processes in the ready queue. Also, as it can be seen in, process
P2 and P4 returned for the second round for execution since their
burst time is greater than the average burst time for all the
processes in the ready queue. The Gantt chart is represented in
chart III.

Chart III: Gantt chart for ImHLVQTRR

Using chart III, the average waiting time, average turnaround time
and number of context switching can be calculated as:
P1: 0, P2: 20 + (147-42) =125, P3: 42, P4: 55 + (170-87) =138, P5:
87, P6: 115
AWT= (0+125+42+138+87+115)/6 = 507/6=84.50

AWT= (0+20) + (45+125) + (13+42) + (65+138) + (28+87) +
(32+115) = 710/6=118.33
Number of CS = 8

PRESENTATION AND DISCUSSION OF RESULTS

Figure 3: Inputs and randomly generated processes bursts times

Figure 4: Interface result for the Classical RR

Figure 5: Interface result for the HLVQTRR

Figure 6: Interface result for the ImHLVQTRR

Figure 3 shows the burst time generated for 6 processes using
number of processes, lower bound and upper bound as the input
parameters. The interfaces in figure 4, figure 5 and figure 6 shows
the results computed for classical RR, HLVQTRR and ImHVQTRR
respectively. From the results, it is clear that the proposed
technique (ImHLVQTRR) minimizes average waiting time, average
turnaround time and number of context switching when compared
with the existing technique (HLVQTRR). In the same vein, though
the number of context switching is the same for the proposed
technique and the classical RR yet the proposed technique
provides better average waiting time and average turnaround time
compared to the classical RR.

http://www.scienceworldjournal.org/

Science World Journal Vol. 17(No 2) 2022
www.scienceworldjournal.org
ISSN: 1597-6343 (Online), ISSN: 2756-391X (Print)
Published by Faculty of Science, Kaduna State University

 An Improved Half Life Variable Quantum Time with Mean Time Slice Round Robin
CPU Scheduling (ImHLVQTRR)

252

SIMULATION OUTPUT BETWEEN CLASSICAL RR, HLVQTRR
and IMHLVQTRR

Table 4: Outputs of Simulation between Classical RR, HLVQTRR
and ImHLVQTRR

Table 4 shows the simulated result between Classical RR,
HLVQTRR and ImHLVQTRR on the performance of the algorithms
in terms of average waiting time (AWT), average turnaround time
(ATAT) and the number of context switching (CS). In this table, nP
represents number of process, LB represents lower bound while
UB is upper bound. When the program is executed, it will require
three parameters – nP, LB and UB to generate random variables
between LB and UB equal to the number of processes entered. For
example, nP=10, LB=6 and UB=76 will generate 10 random
variables which are between 6 and 76. In each of these cases,
AWT, ATAT and CS is calculated for all the three algorithms. From
table 4, after 10 runs, the average total for the existing technique
(HLVQTRR) in terms of AWT, ATAT and CS are 5492.781,
5597.496 and 110 time units while for the proposed technique
(ImHLVQTRR) are 4200.694, 4305.407 and 82.6 time units. By
taking the difference, the results show that the proposed technique
(ImHLVQTRR) minimizes AWT, ATAT and CS by 1292.087,
1292.089 and 27.40 time units respectively when compared with
the existing technique (HLVQTRR). As for the classical RR, the
proposed technique provides better AWT and ATAT than the
Classical RR even though the number of context switching is the
same for both algorithms. The graph for the results are plotted and
shown in figure 7, 8 and 9

Figure 7: AWT: Classical RR Vs. HLVQTRR and ImHLVQTRR

Figure 7 shows the average waiting time between Classical RR Vs.
HLVQTRR and ImHLVQTRR. In this presentation, the proposed
technique provide the minimum average waiting time and then
followed by the classical RR. HLVQTRR provide the worst waiting
time.

Figure 8: ATAT: Classical RR Vs. HLVQTRR and ImHLVQTRR

Figure 8 shows the result that compare the average turnaround
time for the simulation between Classical RR, HLVQTRR and the
proposed techniques (ImHLVQTRR). From this graph, the
proposed technique gives the minimum average turnaround time
and then followed by the classical RR. HLVQTRR produces the
worst turnaround time.

Figure 9: CS: Classical RR Vs. HLVQTRR and ImHLVQTRR

From Figure 9, the number of context switching is the same
between the proposed technique (ImHLVQTRR) and the classical
RR while HLVQTRR produces the worst context switching

Conclusion
The target of CPU scheduling algorithms is to minimize average
waiting time, average turnaround time and number of context
switching. The existing technique (HLVQTRR) proposed by (Ashiru
et al., 2014b) further increased the average waiting time, average
turnaround time and number of context switching as shown in table
4. In order to improve the existing technique, a modified version of
HLVQTRR known as ‘An Improved Half Life Variable Quantum
Time with Mean Time Slice Round Robin CPU Scheduling
(ImHLVQTRR)’was proposed. The simulation results showed that
the average waiting time and average turnaround time is greatly

http://www.scienceworldjournal.org/

Science World Journal Vol. 17(No 2) 2022
www.scienceworldjournal.org
ISSN: 1597-6343 (Online), ISSN: 2756-391X (Print)
Published by Faculty of Science, Kaduna State University

 An Improved Half Life Variable Quantum Time with Mean Time Slice Round Robin
CPU Scheduling (ImHLVQTRR)

253

improved when compared with the classical RR and the existing
technique (HLVQTRR). More so, concerning the number of context
switching, the proposed technique and the classical RR have equal
number of switching. As for the existing technique regarding
context switching, the proposed method minimized number of
context switching more than the existing technique. This algorithm
showed great promise in CPU scheduling.

REFERENCES
ALAZZAM, H., ALHENAWI, E. & AL‑SAYYED, R. 2019. A Hybrid

Job Scheduling Algorithm based on Tabu and Harmony
Search Algorithms. The Journal of Supercomputing.

ASHIRU, S., ABDULLAHI, S. & SAHALU, J. 2014a. Dynamic
Round Robin with Controlled Preemption (DRRCP)
International Journal of Computer Science Issues, 11,
pp.109-117.

ASHIRU, S., SALLEH, A. & SAHALU, J. 2014b. Half Life Variable
Quantum Time Round Robin (HLVQTRR). International
Journal of Computer Science and Information Technologies,
5, 7210-7217.

BISWAS, D., SAHA, S., FAISAL, R. H. & SAMSUDDOHA, M. 2018.
An Improved Round Robin Scheduling Algorithm Based on
Maximum Difference of Two Adjacent Processes. Barishal
University Journal Part 1, 5 pp. 257-271.

DANJUMA, S., DAMS, G. L. & SIMON, A. 2021. Proposed
Approach for Resource Allocation Management in Service
Oriented Architecture (SOA) Environment. Science World
Journal 16, pp. 357-362.

FIAD, A., MAAZA, Z. M. & BENDOUKHA, H. 2020. Improved
Version of Round Robin Scheduling Algorithm Based on
Analytic Model. International Journal of Networked and
Distributed Computing, 8, pp. 195–202.

KHOKHAR, D. & KAUSHIK, A. 2017. Best Time Quantum Round
Robin CPU Scheduling Algorithm. International Journal of
Scientific Engineering and Applied Science (IJSEAS), 3, pp.
213-217.

MISHRA, M. K. & RASHID, F. 2014. An Improved Round Robin
CPU Scheduling Algorithm with Varying Time Quantum.
International Journal of Computer Science, Engineering and
Applications, 4.

MODY, S. & MIRKAR, S. 2019. Smart Round Robin CPU
Scheduling Algorithm For Operating Systems. 4th
International Conference on Electrical, Electronics,
Communication, Computer Technologies and Optimization
Techniques (ICEECCOT).

OMAR, H. K., JIHAD, K. H. & HUSSEIN, S. F. (2021). Comparative
analysis of the essential CPU scheduling algorithms. Bulletin
of Electrical Engineering and Informatics, Vol. 10(5), pp. 2742
- 2750.doi: 10.11591/eei.v10i5.2812

PAUL, T., FAISAL, R. H. & SAMSUDDOHA, M. 2019. Improved
Round Robin Scheduling Algorithm with Progressive Time
Quantum. International Journal of Computer Applications,
178, pp. 30-36.

SILBERSCHATZ, A., GALVIN, P. B. & GAGNE, G. 2005.
Operating Systems Concepts, USA, John Wiley and Sons.

SOHRAWORDI, M., ALI, U. A. M. E., UDDIN, M. P. & HOSSAIN,
M. M. 2019. A Modified Round Robin CPU Scheduling
Algorithm with Dynamic Time Quantum. International Journal
of Advanced Research, 7, pp. 422-429.

ZOUAOUI, S., BOUSSAID, L. & MTIBAA, A. 2019. Improved Time
Quantum Length Estimation for Round Robin Scheduling
Algorithm using Neural Network. Indonesian Journal of
Electrical Engineering and Informatics (IJEEI), 7 pp. 190-202.

http://www.scienceworldjournal.org/

