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ABSTRACT 
Computations of critical minimum in the differential cross sections of 
electron-argon elastic scattering using the partial wave 
decomposition method are presented. The theoretical approach is 
based on the Dirac–Hartree–Fock method. The position of our 
computed critical minimum is at 115 degrees. This is in good 
agreement with experimental and calculated theoretical values. 
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INTRODUCTION 
Electron-atom collisions provide the means of investigating the 
dynamics of several particle systems at a fundamental level. In fact 
much of what is known about the forces and interactions in atoms 
and nuclei has been learned from scattering experiments, in which 
atoms in a target are bombarded with beams of particles 
(Anchaver, 2003). Examples of the importance of scattering in 
studying internal structure of atoms and nuclei and the interactions 
which govern systems of elementary particles include:  nucleons 
scattered from nuclei at various energies reveal information about 
the nuclear forces as well as about the structure of the nuclei; 
electrons of high energy, hence short wavelength, reveal 
information about the charge distribution in nuclei, and indeed 
within nucleons; electrons and heavier projectiles of low energy 
are scattered from atoms to obtain data which can serve as input 
information for calculations of kinetic processes in gases where 
low energy collisions predominate; e.t.c. (Merzbacher, 1970). 
 
Elastic electron-atom scattering takes place if the final state of an 
atom after the interaction coincides with the initial one (Winitzki, 
2004). Total and differential cross-sections for such a process can 
be calculated in various approximations — Born, Eikonal, optical 
theorem, partial wave decomposition, etc. In this work, the 
differential cross-sections of electron-Argon elastic scattering were 
computed using the partial wave decomposition method.  
 
MATERIALS AND METHODS 
We used the FORTRAN code program developed by Koonin & 
Meredith (Koonin et al., 1989) which takes the relativistic 
differential cross-section as a sum of squared modules of the real 
and imaginary scattering amplitudes. The amplitudes can be 
calculated through the phase shifts of spherical waves, which are 
obtained by integration of equations for radial wave functions. In 
these computations the analytical approximation for the atomic 
electrostatic potential given by Lenz and Jensen, called the Lenz-
Jensen potential, based on the Thomas-Fermi model, is used. 
 
Scattering Theory 
For particles of mass m and energy  
퐸 = ℏ > 0      …1.0 

  
scattering from a central potential, V(r) is described by a wave 
function, ψ(r) that satisfies the Schrodinger Wave Equation (SWE) 
 
− ℏ ∇ 휓+ 푉휓 = 퐸휓   …2.0  
with the boundary condition at large distance 
 
휓 →∞ → 푒 + 푓(휃)     …3.0 
 
Equation (3) holds for a beam of electrons incident along z-axis, 
and the scattering angle, 휃 is the angle between r and 푧̂ while 푓 is 
the complex scattering amplitude, which is the basic function we 
seek to determine. The differential cross-section is given by: 
 

Ω
= |푓(휃)|     …4.0 

 
The total cross-section is  
 
휎 = ∫푑Ω σ

Ω
= 2π∫ dθsinθ|f(θ)|π   …5.0 

  
푓 is a function of both 퐸 and 휃 (Messiah, 1968).  
 
Critical Minimum 
The critical minimum is defined by the points on the plane 
constituted by the scattering angle and incident energy axes where 
differential cross-section (DCS) attains its smallest value 
(Marinkovic et al., 2004). These minima appeared to be the most 
sensitive test for both experimental procedures and theoretical 
models, and for comparisons of experimental and theoretical 
results as well (Milosavjevic, 2004). 
 
Another significance of critical minima lies in the fact that their 
positions indicate the highest values of spin polarization of 
scattered electrons (Sienkewicz et al., 2001). The degree of spin 
polarization is given by P =(σ↑ − σ↓)/(σ↑ + σ↓), where σ↑ and σ↓ 
are the cross sections of scattered electrons with spin momentum 
pointing ‘up’ and ‘down’ with respect to the scattering plane. The 
biggest difference between the σ↑ and σ↓ cross section occurs in 
the angle region, where the differential cross section is minimal 
(Schwar et al., 1982).  
 
Partial Wave Decomposition  
The method of partial wave expansion is a special trick to simplify 
the calculation of the scattering amplitude, 푓 (Schiff, 1968). The 
standard partial wave decomposition of the scattering wave 
function 휓 is 
 
휓(푟) = ∑ (2푙 + 1)푖 푒 ( )푃 (푐표푠휃)∞   …6.0 
  
When equation (6) is substituted into the SWE (2) the radial wave 
functions, 푅  are found to satisfy the radial differential equations:  
 
− ℏ + 푉(푟) + ( )ℏ − 퐸 푅 (푟) = 0 …7.0 

 
This is the same equation as that satisfied by a bound state wave 
function but the boundary conditions are different. In particular, 푅 
vanishes at the origin, but it has the large-r asymptotic behaviour  
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푅 → 푘푟[푐표푠훿 푗 (푘푟)− 푠푖푛훿 푛 (푘푟)]  …8.0 
 
 Where 푗  and 푛  are the regular and irregular spherical Bessel 
functions of order 푙.  The scattering amplitude is related to the 
phase shifts 훿  by (Messiah, 1968): 
 
푓(휃) = ∑ (2푙+ 1)푒 푠푖푛훿 푃 (푐표푠휃)∞  …9.0 
  
From equations (5) and (9) the total cross-section is given by  
 
휎 = ∑ (2푙 + 1)푠푖푛 훿∞     …10.0 
 
 Although the sums in equations (9) and (10) extend over all 푙, 
they are in practice limited to only a finite number of partial waves. 
This is because for large 푙, the repulsive centrifugal potential in 
equation (7) is effective in keeping the particle outside the range of 
the potential and so the phase shift is very small (Koonin & 
Meredith, 1989).  
 
If the potential is negligible beyond a radius 푟 , an estimate of 
the highest partial wave that is important is had by setting the 
turning point at this radius: 
 

( )ℏ = 퐸     …11.0 
  
 
 ⇒ 푙 ≈ 푘푟    …12.0  
 
This estimate is usually slightly low since the penetration of the 
centrifugal barrier leads to non-vanishing phase shifts in partial 
waves somewhat higher than this (Niksic, 2003).  
 
The Phase shifts  
To find the phase shift in a given partial wave, we must solve the 
radial equation (7). The equation is linear, so that the boundary 
condition at large 푟 can be satisfied simply by appropriately 
normalizing the solution. 
 
If we put 푅 (푟 = 0) = 0 and take the value at the next lattice 
point, 푅 (푟 = ℎ), to be any convenient small number we then use 
 
푓" ≈     …13.0 
 
for 푅"(ℎ), along with the known values 푅 (0), 푅 (ℎ), and 푘(ℎ) 
to find 푅 (2ℎ).  
 
Now we can integrate outward in 푟 to a radius 푟( ) > 푟 . Here, 
푉 vanishes and 푅 must be a linear combination of the free 
solutions, 푘푟푗 (푘푟) and 푘푟푛 (푘푟): 
 
푅( ) = 퐴푘푟( ) 푐표푠훿 푗 푘푟( ) − 푠푖푛훿 푛 푘푟( )     …14.0 
 
 Although the constant, 퐴 above, depends on the value chosen for 
푅(푟 = ℎ), it is largely irrelevant for our purposes; however, it 
must be kept small enough so that overflows  are  avoided (Koonin 
& Meredith, 1989). Now we continue integrating to a larger radius 
푟( ) > 푟( ): 
 
푅( ) = 퐴푘푟( ) 푐표푠훿 푗 푘푟( ) − 푠푖푛훿 푛 푘푟( )    …15.0  
 
Equations (14) and (15) can then be solved for 훿  to obtain 
 
푡푎푛훿 =

( ) ( )

( ) ( ); 퐺 =
( ) ( )

( ) ( )     …16.0 

 

where 푗( ) = 푗 (푘푟( ) etc. Equation (16) determines 훿  only 
within a multiple of 휋 but this does not affect the physical 
observables [see equations (9) and (10)]. The correct multiple of 
휋’s at a given energy can be determined by comparing the number 
of nodes in 푅 and in the free solution, 푘푟푗  which occur for 
푟 < 푟 . The phase shift in each partial wave vanishes at high 
energies and approaches 푁 휋 at zero energy, where 푁  is the 
number of bound states in the potential in the 푙’th partial wave.  
 
The Lenz-Jensen Potential  
One practical application of the theory discussed above is the 
calculation of the scattering of electrons from neutral atoms. In 
general this is a complicated multi-channel scattering problem 
since there can be reactions leading to final states in which the 
atom is excited. However, as the reaction probabilities are small in 
comparison to elastic scattering, for many purposes the problem 
can be modeled by the scattering of an electron from a central 
potential (Hochstadt, 1971). This potential represents the 
combined influence of the attraction of the central nuclear charge 
(Z) and the screening of this attraction by the Z atomic electrons. 
For a neutral target atom, the potential vanishes at large distances 
faster than 푟 . A very accurate approximation to this potential 
can be had by solving for the self-consistent Hartree-Fock potential 
of the neutral atom. However, a much simpler estimate can be 
obtained using an approximation to the Thomas-Fermi model of 
the atom given by Lenz and Jensen 
 
푉 = − 푒 (1 + 푥 + 푏 푥 + 푏 푥 + 푏 푥 );   … 17.0 
  
with  
 
푒 = 14.409; 푏 = 0.3344; 푏 = 0.0485; 푏 = 2.647 ×
10 ;                                                                           …  18.0  
 
and  
 
푥 = 4.5397푍 푟             …19.0 
 
 This potential is singular at the origin. If the potential is regularized 
by taking it to be a constant within some small radius 푟  (say 
the radius of the atom’s 1s shell), then the calculated cross-section 
will be unaffected except at momentum transfers large enough so 
that 푞푟 ≫ 1.  
 
The incident particle is assumed to have the mass of the electron, 
and, as is appropriate for atomic systems, all lengths are 
measured in angstrom (Å) and all energies in electronvolt (eV). 
The potential is assumed to vanish beyond 2Å. Furthermore, the 
푟  singularity in the potential is cutoff inside the radius of the 1s 
shell of the target atom. 
 
Research Methodology 
A FORTRAN program developed by Koonin and Meredith was the 
main program used for all the  computations. The program is made 
up of four categories of files: common utility programs, physics 
source code, data files and include files. 
 
The physics source code is the main source code which contains 
the routine for the actual computations. The data files contain data 
to be read into the main program at run-time and have the 
extension .DAT 
 
The first thing done was the successful installation of the 
FORTRAN codes in the computer. This requires familiarity with the 
computer’s operating system, the FORTRAN compiler, linker, 

28 



Science World Journal Vol 5 (No 4) 2010 
 www.scienceworldjournal.org 
ISSN 1597-6343 
 

                                                                   Critical Minimum In Elastic Electron-Argon Scattering 

editor, and the graphics package to be used in plotting. The 
program runs interactively. It begins with a title page describing the 
physical problem to be investigated and the output that will be 
produced. Next, the menu is displayed, giving the choice of 
entering parameter values, examining parameter values, running 
the program, or terminating the program. When the calculation is 
finished, all values are zeroed (except default parameters), and the 
main menu is re-displayed, giving us the opportunity to redo the 
calculation with a new set of parameters or to end execution. Data  

generated from the program were saved in files which were later 
imported into the graphics software Origin 5.0 for plotting. 
 

RESULTS  
 Results were generated for several electron incident energies and 
the graphics software Origin 5.0 used to plot graphs. The results 
obtained were compared with: experimental data obtained by 
Milosavjevic (2004) and theoretical data of Marinkovic et al., 
(2004). 

 
TABLE 1. COMPUTED ANGLE DEPENDENT DIFFERENTIAL CROSS SECTIONS (Åퟐ) FOR ELASTIC ELECTRON-ARGON 

SCATTERING IN THE VICINITY OF THE HIGH-ENERGY (100-150 eV) CRITICAL MINIMUM USING THE PARTIAL WAVE METHOD 
WITH LENZ-JENSEN POTENTIAL. 

 
E(eV) 
휃 (퐷푒푔. ) 100 105 110 115 120 125 130 135 140 145 150 

20 28.560 27.400 26.360 25.420 24.560 23.780 23.070 22.400 21.460 20.860 20.310 
40 3.076 2.916 2.783 2.674 2.583 2.508 2.446 2.396 2.247 2.197 2.154 
60 0.797 0.846 0.890 0.929 0.961 0.987 1.008 1.023 1.840 1.095 1.102 
80 1.850 1.746 1.648 1.556 1.471 1.391 1.316 1.246 1.182 1.120 1.063 
100 1.177 1.029 0.899 0.784 0.684 0.597 0.521 0.455 0.404 0.355 0.314 
110 0.470 0.373 0.293 0.226 0.172 0.129 0.095 0.068 0.058 0.045 0.037 
115 0.216 0.155 0.106 0.069 0.042 0.022 0.0096 0.0025 0.000018 0.0014 0.006 
120 0.097 0.070 0.052 0.040 0.035 0.034 0.038 0.046 0.066 0.079 0.092 
140 1.570 1.629 1.674 1.709 1.736 1.757 1.773 1.784 1.679 0.079 1.655 

 
 

2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0
1 E - 5

1 E - 4

1 E - 3

0 . 0 1

0 . 1

1

1 0

P a r t i a l  W a v e  M e t h o d

 1 0 0
 1 0 5
 1 1 0
 1 1 5
 1 2 0
 1 2 0
 1 2 5
 1 3 0
 1 3 5
 1 4 0
 1 4 5
 1 5 0

D
C

S
 X

10
-2

1  (m
2 sr

-1
) 

S c a t t e r i n g  A n g l e  ( D e g r e s s )

 
FIG 1. ANGLE DEPENDENT DIFFERENTIAL CROSS-SECTIONS (DCS) FOR ELASTIC ELECTRON-ARGON SCATTERING IN THE 

VICINITY OF THE HIGH-ENERGY CRITICAL MINIMUM (PARTIAL WAVE METHOD). 
 
 
DISCUSSION 
From Fig. 1, our computed critical minimum was obtained at 115 
degrees. This is in good agreement with the 119.4 ± 0.5 degrees 
experimental value obtained by Milosavjevic (2004) and the 
theoretical value of 118.9 ± 0.3 degrees calculated by Marinkovic 
et al., (2004). The value of the critical minimum obtained is 
0.000018 at an incidence angle of 115 degrees and an incidence 
energy of 140 eV  (Table 1).  
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